CIPRES_THREADSPP=4 CIPRES_NP=6 running: raxmlHPC-HYBRID -T 4 -s infile -N autoMRE -n result -f a -p 12345 -x 12345 -m PROTCATDAYHOFF CIPRES_THREADSPP=4 CIPRES_NP=6 running: raxmlHPC-HYBRID -T 4 -s infile -N autoMRE -n result -f a -p 12345 -x 12345 -m PROTCATDAYHOFF CIPRES_THREADSPP=4 CIPRES_NP=6 running: raxmlHPC-HYBRID -T 4 -s infile -N autoMRE -n result -f a -p 12345 -x 12345 -m PROTCATDAYHOFF CIPRES_THREADSPP=4 CIPRES_NP=6 running: raxmlHPC-HYBRID -T 4 -s infile -N autoMRE -n result -f a -p 12345 -x 12345 -m PROTCATDAYHOFF CIPRES_THREADSPP=4 CIPRES_NP=6 running: raxmlHPC-HYBRID -T 4 -s infile -N autoMRE -n result -f a -p 12345 -x 12345 -m PROTCATDAYHOFF CIPRES_THREADSPP=4 CIPRES_NP=6 running: raxmlHPC-HYBRID -T 4 -s infile -N autoMRE -n result -f a -p 12345 -x 12345 -m PROTCATDAYHOFF This is RAxML MPI Process Number: 5 This is RAxML MPI Process Number: 0 This is RAxML MPI Process Number: 3 This is RAxML MPI Process Number: 1 This is RAxML MPI Process Number: 2 This is RAxML MPI Process Number: 4 This is the RAxML Master Pthread This is the RAxML Master Pthread This is the RAxML Master Pthread This is the RAxML Master Pthread This is the RAxML Master Pthread This is the RAxML Master Pthread This is RAxML Worker Pthread Number: 2 This is RAxML Worker Pthread Number: 3 This is RAxML Worker Pthread Number: 2 This is RAxML Worker Pthread Number: 1 This is RAxML Worker Pthread Number: 3 This is RAxML Worker Pthread Number: 1 This is RAxML Worker Pthread Number: 3 This is RAxML Worker Pthread Number: 2 This is RAxML Worker Pthread Number: 2 This is RAxML Worker Pthread Number: 3 This is RAxML Worker Pthread Number: 1 This is RAxML Worker Pthread Number: 2 This is RAxML Worker Pthread Number: 1 This is RAxML Worker Pthread Number: 3 This is RAxML Worker Pthread Number: 1 This is RAxML Worker Pthread Number: 2 This is RAxML Worker Pthread Number: 1 This is RAxML Worker Pthread Number: 3 Partition No Name Provided number 0 has a problem, the number of expected states is 20 the number of states that are present is 17. Please go and fix your data! Partition No Name Provided number 0 has a problem, the number of expected states is 20 the number of states that are present is 17. Please go and fix your data! Partition No Name Provided number 0 has a problem, the number of expected states is 20 the number of states that are present is 17. Please go and fix your data! Partition No Name Provided number 0 has a problem, the number of expected states is 20 the number of states that are present is 17. Please go and fix your data! Partition No Name Provided number 0 has a problem, the number of expected states is 20 the number of states that are present is 17. Please go and fix your data! Partition No Name Provided number 0 has a problem, the number of expected states is 20 the number of states that are present is 17. Please go and fix your data! Partition No Name Provided number 0 has a problem, the number of expected states is 20 the number of states that are present is 17. Please go and fix your data! Partition No Name Provided number 0 has a problem, the number of expected states is 20 the number of states that are present is 17. Please go and fix your data! Partition No Name Provided number 0 has a problem, the number of expected states is 20 the number of states that are present is 17. Please go and fix your data! Partition No Name Provided number 0 has a problem, the number of expected states is 20 the number of states that are present is 17. Please go and fix your data! This is RAxML version 8.2.12 released by Alexandros Stamatakis on May 2018. With greatly appreciated code contributions by: Andre Aberer (HITS) Simon Berger (HITS) Alexey Kozlov (HITS) Kassian Kobert (HITS) David Dao (KIT and HITS) Sarah Lutteropp (KIT and HITS) Nick Pattengale (Sandia) Wayne Pfeiffer (SDSC) Akifumi S. Tanabe (NRIFS) Charlie Taylor (UF) Alignment has 17 distinct alignment patterns Proportion of gaps and completely undetermined characters in this alignment: 0.00% RAxML rapid bootstrapping and subsequent ML search Using 1 distinct models/data partitions with joint branch length optimization Executing 1000 rapid bootstrap inferences and thereafter a thorough ML search All free model parameters will be estimated by RAxML ML estimate of 25 per site rate categories Likelihood of final tree will be evaluated and optimized under GAMMA GAMMA Model parameters will be estimated up to an accuracy of 0.1000000000 Log Likelihood units Partition: 0 Alignment Patterns: 17 Name: No Name Provided DataType: AA Substitution Matrix: DAYHOFF Using fixed base frequencies RAxML was called as follows: raxmlHPC-HYBRID -T 4 -s infile -N autoMRE -n result -f a -p 12345 -x 12345 -m PROTCATDAYHOFF Time for BS model parameter optimization on Process 5: 0.000779 seconds Partition No Name Provided number 0 has a problem, the number of expected states is 20 the number of states that are present is 17. Please go and fix your data! Partition No Name Provided number 0 has a problem, the number of expected states is 20 the number of states that are present is 17. Please go and fix your data! Time for BS model parameter optimization on Process 2: 0.000775 seconds Time for BS model parameter optimization on Process 3: 0.000845 seconds Time for BS model parameter optimization on Process 4: 0.000784 seconds Time for BS model parameter optimization on Process 1: 0.000834 seconds Time for BS model parameter optimization on Process 0: 0.000818 seconds Bootstrap[835]: Time 0.027670 seconds, bootstrap likelihood -100.234224, best rearrangement setting 6 Bootstrap[501]: Time 0.033689 seconds, bootstrap likelihood -112.231970, best rearrangement setting 9 Bootstrap[334]: Time 0.030539 seconds, bootstrap likelihood -152.543416, best rearrangement setting 10 Bootstrap[167]: Time 0.035280 seconds, bootstrap likelihood -146.373721, best rearrangement setting 12 Bootstrap[836]: Time 0.004927 seconds, bootstrap likelihood -107.617542, best rearrangement setting 15 Bootstrap[0]: Time 0.026597 seconds, bootstrap likelihood -127.783435, best rearrangement setting 13 Bootstrap[668]: Time 0.044886 seconds, bootstrap likelihood -126.516625, best rearrangement setting 8 Bootstrap[502]: Time 0.010091 seconds, bootstrap likelihood -113.602583, best rearrangement setting 14 Bootstrap[168]: Time 0.009192 seconds, bootstrap likelihood -96.918054, best rearrangement setting 13 Bootstrap[335]: Time 0.010500 seconds, bootstrap likelihood -134.952733, best rearrangement setting 13 Bootstrap[837]: Time 0.007833 seconds, bootstrap likelihood -129.767757, best rearrangement setting 6 Bootstrap[1]: Time 0.007643 seconds, bootstrap likelihood -111.177190, best rearrangement setting 13 Bootstrap[669]: Time 0.008578 seconds, bootstrap likelihood -116.527671, best rearrangement setting 14 Bootstrap[503]: Time 0.007206 seconds, bootstrap likelihood -129.956706, best rearrangement setting 15 Bootstrap[336]: Time 0.006376 seconds, bootstrap likelihood -104.187796, best rearrangement setting 14 Bootstrap[169]: Time 0.010148 seconds, bootstrap likelihood -113.572876, best rearrangement setting 13 Bootstrap[838]: Time 0.007409 seconds, bootstrap likelihood -117.629887, best rearrangement setting 13 Bootstrap[670]: Time 0.005129 seconds, bootstrap likelihood -104.202046, best rearrangement setting 5 Bootstrap[2]: Time 0.007515 seconds, bootstrap likelihood -94.966477, best rearrangement setting 12 Bootstrap[337]: Time 0.007587 seconds, bootstrap likelihood -100.002479, best rearrangement setting 8 Bootstrap[839]: Time 0.008436 seconds, bootstrap likelihood -132.136995, best rearrangement setting 14 Bootstrap[504]: Time 0.014893 seconds, bootstrap likelihood -141.572958, best rearrangement setting 10 Bootstrap[671]: Time 0.008333 seconds, bootstrap likelihood -103.647795, best rearrangement setting 11 Bootstrap[3]: Time 0.008254 seconds, bootstrap likelihood -106.860063, best rearrangement setting 15 Bootstrap[840]: Time 0.004071 seconds, bootstrap likelihood -87.594342, best rearrangement setting 5 Bootstrap[505]: Time 0.005939 seconds, bootstrap likelihood -100.687313, best rearrangement setting 10 Bootstrap[338]: Time 0.012947 seconds, bootstrap likelihood -112.710358, best rearrangement setting 14 Bootstrap[672]: Time 0.008690 seconds, bootstrap likelihood -127.658525, best rearrangement setting 6 Bootstrap[4]: Time 0.006775 seconds, bootstrap likelihood -98.273093, best rearrangement setting 10 Bootstrap[506]: Time 0.004517 seconds, bootstrap likelihood -97.959832, best rearrangement setting 13 Bootstrap[841]: Time 0.010745 seconds, bootstrap likelihood -107.070455, best rearrangement setting 5 Bootstrap[339]: Time 0.008203 seconds, bootstrap likelihood -115.786266, best rearrangement setting 12 Bootstrap[170]: Time 0.035963 seconds, bootstrap likelihood -111.453124, best rearrangement setting 6 Bootstrap[5]: Time 0.006966 seconds, bootstrap likelihood -113.241008, best rearrangement setting 10 Bootstrap[673]: Time 0.009675 seconds, bootstrap likelihood -119.714132, best rearrangement setting 15 Bootstrap[507]: Time 0.008225 seconds, bootstrap likelihood -111.657909, best rearrangement setting 7 Bootstrap[842]: Time 0.008163 seconds, bootstrap likelihood -130.809814, best rearrangement setting 11 Bootstrap[340]: Time 0.008209 seconds, bootstrap likelihood -122.821262, best rearrangement setting 14 Bootstrap[6]: Time 0.008716 seconds, bootstrap likelihood -96.233935, best rearrangement setting 6 Bootstrap[508]: Time 0.006226 seconds, bootstrap likelihood -111.139937, best rearrangement setting 10 Bootstrap[674]: Time 0.007484 seconds, bootstrap likelihood -110.537863, best rearrangement setting 11 Bootstrap[843]: Time 0.007991 seconds, bootstrap likelihood -132.648094, best rearrangement setting 14 Bootstrap[171]: Time 0.016578 seconds, bootstrap likelihood -103.454008, best rearrangement setting 7 Bootstrap[341]: Time 0.008055 seconds, bootstrap likelihood -142.300616, best rearrangement setting 15 Bootstrap[675]: Time 0.007035 seconds, bootstrap likelihood -113.344579, best rearrangement setting 5 Bootstrap[7]: Time 0.009505 seconds, bootstrap likelihood -115.046191, best rearrangement setting 14 Bootstrap[509]: Time 0.007175 seconds, bootstrap likelihood -138.682112, best rearrangement setting 10 Bootstrap[172]: Time 0.005897 seconds, bootstrap likelihood -100.801055, best rearrangement setting 11 Bootstrap[342]: Time 0.006686 seconds, bootstrap likelihood -118.329414, best rearrangement setting 9 Bootstrap[676]: Time 0.006736 seconds, bootstrap likelihood -105.745678, best rearrangement setting 12 Bootstrap[173]: Time 0.006982 seconds, bootstrap likelihood -122.109671, best rearrangement setting 10 Bootstrap[8]: Time 0.009474 seconds, bootstrap likelihood -137.543526, best rearrangement setting 5 Bootstrap[174]: Time 0.007287 seconds, bootstrap likelihood -127.800414, best rearrangement setting 9 Bootstrap[175]: Time 0.006672 seconds, bootstrap likelihood -124.635286, best rearrangement setting 7 Bootstrap[343]: Time 0.004111 seconds, bootstrap likelihood -76.773618, best rearrangement setting 6 Bootstrap[677]: Time 0.006463 seconds, bootstrap likelihood -97.844603, best rearrangement setting 6 Bootstrap[9]: Time 0.007687 seconds, bootstrap likelihood -96.627353, best rearrangement setting 7 Bootstrap[510]: Time 0.007788 seconds, bootstrap likelihood -123.662701, best rearrangement setting 12 Bootstrap[844]: Time 0.008245 seconds, bootstrap likelihood -97.696395, best rearrangement setting 11 Bootstrap[176]: Time 0.008732 seconds, bootstrap likelihood -104.842688, best rearrangement setting 12Bootstrap[344]: Time 0.007796 seconds, bootstrap likelihood -115.314274, best rearrangement setting 13 Bootstrap[845]: Time 0.006906 seconds, bootstrap likelihood -124.330922, best rearrangement setting 10 Bootstrap[511]: Time 0.008699 seconds, bootstrap likelihood -104.371677, best rearrangement setting 5 Bootstrap[678]: Time 0.012857 seconds, bootstrap likelihood -116.170323, best rearrangement setting 7 Bootstrap[345]: Time 0.008531 seconds, bootstrap likelihood -107.887902, best rearrangement setting 7 Bootstrap[177]: Time 0.007424 seconds, bootstrap likelihood -110.393166, best rearrangement setting 10 Bootstrap[10]: Time 0.013409 seconds, bootstrap likelihood -117.066772, best rearrangement setting 7 Bootstrap[846]: Time 0.006965 seconds, bootstrap likelihood -91.298787, best rearrangement setting 11 Bootstrap[512]: Time 0.008686 seconds, bootstrap likelihood -125.945804, best rearrangement setting 9 Bootstrap[346]: Time 0.010045 seconds, bootstrap likelihood -152.018413, best rearrangement setting 11 Bootstrap[679]: Time 0.011735 seconds, bootstrap likelihood -113.231046, best rearrangement setting 10 Bootstrap[178]: Time 0.008473 seconds, bootstrap likelihood -117.145402, best rearrangement setting 6 Bootstrap[11]: Time 0.006955 seconds, bootstrap likelihood -133.388312, best rearrangement setting 5 Bootstrap[847]: Time 0.009024 seconds, bootstrap likelihood -117.793248, best rearrangement setting 9 Bootstrap[513]: Time 0.008463 seconds, bootstrap likelihood -103.910997, best rearrangement setting 7 Bootstrap[347]: Time 0.006560 seconds, bootstrap likelihood -142.184533, best rearrangement setting 10 Bootstrap[12]: Time 0.005450 seconds, bootstrap likelihood -114.877538, best rearrangement setting 8 Bootstrap[680]: Time 0.009219 seconds, bootstrap likelihood -129.904636, best rearrangement setting 13 Bootstrap[848]: Time 0.007332 seconds, bootstrap likelihood -149.228682, best rearrangement setting 5 Bootstrap[514]: Time 0.006708 seconds, bootstrap likelihood -113.047540, best rearrangement setting 12 Bootstrap[179]: Time 0.015560 seconds, bootstrap likelihood -99.476921, best rearrangement setting 15 Bootstrap[348]: Time 0.007143 seconds, bootstrap likelihood -121.538917, best rearrangement setting 7 Bootstrap[13]: Time 0.007476 seconds, bootstrap likelihood -120.179845, best rearrangement setting 7 Bootstrap[681]: Time 0.007827 seconds, bootstrap likelihood -134.695351, best rearrangement setting 14 Bootstrap[849]: Time 0.009478 seconds, bootstrap likelihood -141.945820, best rearrangement setting 5 Bootstrap[515]: Time 0.007554 seconds, bootstrap likelihood -112.959610, best rearrangement setting 10 Bootstrap[180]: Time 0.005875 seconds, bootstrap likelihood -95.103652, best rearrangement setting 9 Bootstrap[349]: Time 0.004463 seconds, bootstrap likelihood -108.070500, best rearrangement setting 14 Bootstrap[14]: Time 0.008041 seconds, bootstrap likelihood -111.993314, best rearrangement setting 12 Bootstrap[850]: Time 0.006962 seconds, bootstrap likelihood -112.234915, best rearrangement setting 12 Bootstrap[682]: Time 0.009369 seconds, bootstrap likelihood -126.558993, best rearrangement setting 13 Bootstrap[516]: Time 0.008140 seconds, bootstrap likelihood -107.445176, best rearrangement setting 13 Bootstrap[350]: Time 0.005794 seconds, bootstrap likelihood -136.168891, best rearrangement setting 13Bootstrap[181]: Time 0.008273 seconds, bootstrap likelihood -156.040676, best rearrangement setting 15 Bootstrap[15]: Time 0.008958 seconds, bootstrap likelihood -105.448909, best rearrangement setting 15 Bootstrap[851]: Time 0.006354 seconds, bootstrap likelihood -123.145159, best rearrangement setting 9 Bootstrap[182]: Time 0.004744 seconds, bootstrap likelihood -110.427680, best rearrangement setting 14 Bootstrap[683]: Time 0.008669 seconds, bootstrap likelihood -118.516939, best rearrangement setting 13 Bootstrap[517]: Time 0.007804 seconds, bootstrap likelihood -134.035573, best rearrangement setting 8 Bootstrap[16]: Time 0.005531 seconds, bootstrap likelihood -105.955970, best rearrangement setting 12 Bootstrap[183]: Time 0.007269 seconds, bootstrap likelihood -105.309398, best rearrangement setting 7 Bootstrap[684]: Time 0.007042 seconds, bootstrap likelihood -117.678985, best rearrangement setting 14 Bootstrap[351]: Time 0.004598 seconds, bootstrap likelihood -94.655764, best rearrangement setting 12 Bootstrap[685]: Time 0.004854 seconds, bootstrap likelihood -124.860998, best rearrangement setting 12 Bootstrap[184]: Time 0.004843 seconds, bootstrap likelihood -93.334353, best rearrangement setting 12 Bootstrap[852]: Time 0.009379 seconds, bootstrap likelihood -124.217429, best rearrangement setting 12 Bootstrap[17]: Time 0.009440 seconds, bootstrap likelihood -130.676235, best rearrangement setting 12 Bootstrap[686]: Time 0.005539 seconds, bootstrap likelihood -95.634029, best rearrangement setting 9 Bootstrap[518]: Time 0.015231 seconds, bootstrap likelihood -132.333102, best rearrangement setting 12 Bootstrap[352]: Time 0.007847 seconds, bootstrap likelihood -136.291405, best rearrangement setting 12Bootstrap[185]: Time 0.005040 seconds, bootstrap likelihood -115.665778, best rearrangement setting 14 Bootstrap[853]: Time 0.008559 seconds, bootstrap likelihood -152.931034, best rearrangement setting 7 Bootstrap[18]: Time 0.008574 seconds, bootstrap likelihood -120.731648, best rearrangement setting 5 Bootstrap[519]: Time 0.007656 seconds, bootstrap likelihood -123.586448, best rearrangement setting 11 Bootstrap[186]: Time 0.007599 seconds, bootstrap likelihood -119.035044, best rearrangement setting 6 Bootstrap[353]: Time 0.008395 seconds, bootstrap likelihood -132.441966, best rearrangement setting 15 Bootstrap[19]: Time 0.005997 seconds, bootstrap likelihood -108.820873, best rearrangement setting 8 Bootstrap[854]: Time 0.008586 seconds, bootstrap likelihood -129.127067, best rearrangement setting 8 Bootstrap[687]: Time 0.015376 seconds, bootstrap likelihood -126.268378, best rearrangement setting 10 Bootstrap[520]: Time 0.007183 seconds, bootstrap likelihood -115.762645, best rearrangement setting 13 Bootstrap[187]: Time 0.005525 seconds, bootstrap likelihood -104.221439, best rearrangement setting 8 Bootstrap[354]: Time 0.006556 seconds, bootstrap likelihood -106.332982, best rearrangement setting 7 Bootstrap[20]: Time 0.006773 seconds, bootstrap likelihood -131.325520, best rearrangement setting 10 Bootstrap[855]: Time 0.006819 seconds, bootstrap likelihood -124.528965, best rearrangement setting 13 Bootstrap[688]: Time 0.008295 seconds, bootstrap likelihood -113.597612, best rearrangement setting 15 Bootstrap[521]: Time 0.006541 seconds, bootstrap likelihood -122.484418, best rearrangement setting 5 Bootstrap[188]: Time 0.008506 seconds, bootstrap likelihood -125.057068, best rearrangement setting 9 Bootstrap[21]: Time 0.006839 seconds, bootstrap likelihood -86.145523, best rearrangement setting 6 Bootstrap[856]: Time 0.007822 seconds, bootstrap likelihood -144.922561, best rearrangement setting 11 Bootstrap[689]: Time 0.006877 seconds, bootstrap likelihood -126.954213, best rearrangement setting 8 Bootstrap[355]: Time 0.014218 seconds, bootstrap likelihood -129.850253, best rearrangement setting 12 Bootstrap[522]: Time 0.008399 seconds, bootstrap likelihood -151.723785, best rearrangement setting 15 Bootstrap[189]: Time 0.007584 seconds, bootstrap likelihood -90.833284, best rearrangement setting 8 Bootstrap[22]: Time 0.006416 seconds, bootstrap likelihood -140.317637, best rearrangement setting 5 Bootstrap[857]: Time 0.007719 seconds, bootstrap likelihood -104.792027, best rearrangement setting 12 Bootstrap[356]: Time 0.007430 seconds, bootstrap likelihood -111.823809, best rearrangement setting 12 Bootstrap[523]: Time 0.007051 seconds, bootstrap likelihood -136.752241, best rearrangement setting 5 Bootstrap[190]: Time 0.005845 seconds, bootstrap likelihood -101.518065, best rearrangement setting 8 Bootstrap[858]: Time 0.007287 seconds, bootstrap likelihood -116.161381, best rearrangement setting 12 Bootstrap[524]: Time 0.005293 seconds, bootstrap likelihood -110.869909, best rearrangement setting 10 Bootstrap[357]: Time 0.007454 seconds, bootstrap likelihood -111.351695, best rearrangement setting 9 Bootstrap[23]: Time 0.013123 seconds, bootstrap likelihood -94.461980, best rearrangement setting 7 Bootstrap[191]: Time 0.007701 seconds, bootstrap likelihood -104.702718, best rearrangement setting 7 Bootstrap[690]: Time 0.028939 seconds, bootstrap likelihood -106.215387, best rearrangement setting 8 Bootstrap[525]: Time 0.008997 seconds, bootstrap likelihood -109.522861, best rearrangement setting 7 Bootstrap[358]: Time 0.007221 seconds, bootstrap likelihood -86.161842, best rearrangement setting 7Bootstrap[24]: Time 0.006941 seconds, bootstrap likelihood -98.844567, best rearrangement setting 8 Bootstrap[859]: Time 0.014879 seconds, bootstrap likelihood -99.025776, best rearrangement setting 6 Bootstrap[691]: Time 0.006380 seconds, bootstrap likelihood -94.754213, best rearrangement setting 11 Bootstrap[692]: Time 0.007348 seconds, bootstrap likelihood -128.380746, best rearrangement setting 7 Bootstrap[192]: Time 0.005212 seconds, bootstrap likelihood -120.991967, best rearrangement setting 7 Bootstrap[860]: Time 0.008061 seconds, bootstrap likelihood -86.435354, best rearrangement setting 12 Bootstrap[359]: Time 0.008600 seconds, bootstrap likelihood -98.391082, best rearrangement setting 9Bootstrap[25]: Time 0.008612 seconds, bootstrap likelihood -107.910701, best rearrangement setting 6 Bootstrap[526]: Time 0.008794 seconds, bootstrap likelihood -121.557998, best rearrangement setting 10 Bootstrap[693]: Time 0.008696 seconds, bootstrap likelihood -102.310844, best rearrangement setting 11 Bootstrap[193]: Time 0.004749 seconds, bootstrap likelihood -118.088727, best rearrangement setting 15 Bootstrap[861]: Time 0.008059 seconds, bootstrap likelihood -102.448082, best rearrangement setting 5 Bootstrap[26]: Time 0.008026 seconds, bootstrap likelihood -121.656009, best rearrangement setting 12 Bootstrap[360]: Time 0.008444 seconds, bootstrap likelihood -108.272496, best rearrangement setting 7 Bootstrap[694]: Time 0.006954 seconds, bootstrap likelihood -118.071712, best rearrangement setting 13 Bootstrap[194]: Time 0.007448 seconds, bootstrap likelihood -117.864167, best rearrangement setting 8 Bootstrap[527]: Time 0.010128 seconds, bootstrap likelihood -107.924174, best rearrangement setting 10 Bootstrap[862]: Time 0.007603 seconds, bootstrap likelihood -98.182673, best rearrangement setting 8 Bootstrap[27]: Time 0.007306 seconds, bootstrap likelihood -126.496631, best rearrangement setting 10 Bootstrap[361]: Time 0.009391 seconds, bootstrap likelihood -110.806644, best rearrangement setting 5 Bootstrap[195]: Time 0.005874 seconds, bootstrap likelihood -93.503746, best rearrangement setting 6 Bootstrap[695]: Time 0.009041 seconds, bootstrap likelihood -103.688669, best rearrangement setting 11 Bootstrap[863]: Time 0.004545 seconds, bootstrap likelihood -127.081933, best rearrangement setting 8 Bootstrap[528]: Time 0.009428 seconds, bootstrap likelihood -125.598736, best rearrangement setting 13 Bootstrap[28]: Time 0.007768 seconds, bootstrap likelihood -124.744345, best rearrangement setting 11 Bootstrap[864]: Time 0.004992 seconds, bootstrap likelihood -101.731456, best rearrangement setting 8 Bootstrap[362]: Time 0.008297 seconds, bootstrap likelihood -104.164917, best rearrangement setting 12 Bootstrap[196]: Time 0.008036 seconds, bootstrap likelihood -138.007209, best rearrangement setting 14 Bootstrap[696]: Time 0.010030 seconds, bootstrap likelihood -123.380815, best rearrangement setting 13 Bootstrap[529]: Time 0.011003 seconds, bootstrap likelihood -134.610678, best rearrangement setting 7 Bootstrap[29]: Time 0.009422 seconds, bootstrap likelihood -88.913450, best rearrangement setting 12 Bootstrap[197]: Time 0.008001 seconds, bootstrap likelihood -80.939286, best rearrangement setting 5 Bootstrap[363]: Time 0.010401 seconds, bootstrap likelihood -115.979160, best rearrangement setting 15 Bootstrap[865]: Time 0.019656 seconds, bootstrap likelihood -127.507033, best rearrangement setting 6 Bootstrap[697]: Time 0.007506 seconds, bootstrap likelihood -110.717948, best rearrangement setting 7 Bootstrap[530]: Time 0.008474 seconds, bootstrap likelihood -126.690120, best rearrangement setting 5 Bootstrap[364]: Time 0.004353 seconds, bootstrap likelihood -135.535353, best rearrangement setting 5 Bootstrap[198]: Time 0.005998 seconds, bootstrap likelihood -97.116152, best rearrangement setting 7 Bootstrap[866]: Time 0.007080 seconds, bootstrap likelihood -130.987403, best rearrangement setting 6 Bootstrap[30]: Time 0.012604 seconds, bootstrap likelihood -113.839304, best rearrangement setting 15 Bootstrap[698]: Time 0.007366 seconds, bootstrap likelihood -113.311573, best rearrangement setting 6 Bootstrap[365]: Time 0.005322 seconds, bootstrap likelihood -134.816454, best rearrangement setting 9 Bootstrap[531]: Time 0.008379 seconds, bootstrap likelihood -90.934039, best rearrangement setting 5 Bootstrap[199]: Time 0.005408 seconds, bootstrap likelihood -120.766702, best rearrangement setting 7 Bootstrap[31]: Time 0.004812 seconds, bootstrap likelihood -113.402247, best rearrangement setting 15 Bootstrap[699]: Time 0.007317 seconds, bootstrap likelihood -133.449482, best rearrangement setting 14 Bootstrap[867]: Time 0.010677 seconds, bootstrap likelihood -105.380656, best rearrangement setting 12 Bootstrap[32]: Time 0.006824 seconds, bootstrap likelihood -129.429747, best rearrangement setting 6 Bootstrap[200]: Time 0.008074 seconds, bootstrap likelihood -146.071801, best rearrangement setting 14 Bootstrap[366]: Time 0.016486 seconds, bootstrap likelihood -118.138389, best rearrangement setting 8 Bootstrap[532]: Time 0.015216 seconds, bootstrap likelihood -83.381376, best rearrangement setting 12 Bootstrap[700]: Time 0.008908 seconds, bootstrap likelihood -97.615062, best rearrangement setting 11 Bootstrap[868]: Time 0.007629 seconds, bootstrap likelihood -116.011302, best rearrangement setting 10 Bootstrap[33]: Time 0.010225 seconds, bootstrap likelihood -108.706746, best rearrangement setting 15 Bootstrap[367]: Time 0.007606 seconds, bootstrap likelihood -142.446959, best rearrangement setting 13 Bootstrap[533]: Time 0.007276 seconds, bootstrap likelihood -118.223300, best rearrangement setting 10 Bootstrap[701]: Time 0.007109 seconds, bootstrap likelihood -127.142002, best rearrangement setting 11 Bootstrap[534]: Time 0.004447 seconds, bootstrap likelihood -117.115576, best rearrangement setting 12 Bootstrap[201]: Time 0.005995 seconds, bootstrap likelihood -123.180581, best rearrangement setting 8 Bootstrap[34]: Time 0.006399 seconds, bootstrap likelihood -112.631470, best rearrangement setting 11 Bootstrap[702]: Time 0.007406 seconds, bootstrap likelihood -100.271300, best rearrangement setting 10 Bootstrap[535]: Time 0.007696 seconds, bootstrap likelihood -116.135908, best rearrangement setting 13 Bootstrap[869]: Time 0.008251 seconds, bootstrap likelihood -113.135255, best rearrangement setting 8 Bootstrap[368]: Time 0.009882 seconds, bootstrap likelihood -93.722235, best rearrangement setting 5 Bootstrap[202]: Time 0.007997 seconds, bootstrap likelihood -88.183076, best rearrangement setting 14Bootstrap[35]: Time 0.007078 seconds, bootstrap likelihood -101.138306, best rearrangement setting 8 Bootstrap[536]: Time 0.005876 seconds, bootstrap likelihood -96.175316, best rearrangement setting 13 Bootstrap[703]: Time 0.012301 seconds, bootstrap likelihood -104.550318, best rearrangement setting 8 Bootstrap[36]: Time 0.004370 seconds, bootstrap likelihood -109.704416, best rearrangement setting 9 Bootstrap[870]: Time 0.007961 seconds, bootstrap likelihood -123.226480, best rearrangement setting 13 Bootstrap[537]: Time 0.004655 seconds, bootstrap likelihood -98.675990, best rearrangement setting 11 Bootstrap[369]: Time 0.009681 seconds, bootstrap likelihood -121.870839, best rearrangement setting 8 Bootstrap[203]: Time 0.006723 seconds, bootstrap likelihood -120.561641, best rearrangement setting 6 Bootstrap[704]: Time 0.008766 seconds, bootstrap likelihood -139.852754, best rearrangement setting 9 Bootstrap[37]: Time 0.009872 seconds, bootstrap likelihood -113.553599, best rearrangement setting 11 Bootstrap[871]: Time 0.008115 seconds, bootstrap likelihood -86.103694, best rearrangement setting 6 Bootstrap[538]: Time 0.007751 seconds, bootstrap likelihood -138.250907, best rearrangement setting 12 Bootstrap[370]: Time 0.011037 seconds, bootstrap likelihood -133.317405, best rearrangement setting 14 Bootstrap[204]: Time 0.008191 seconds, bootstrap likelihood -106.878963, best rearrangement setting 11 Bootstrap[705]: Time 0.008375 seconds, bootstrap likelihood -94.485814, best rearrangement setting 12 Bootstrap[38]: Time 0.008740 seconds, bootstrap likelihood -133.493984, best rearrangement setting 8 Bootstrap[371]: Time 0.005716 seconds, bootstrap likelihood -115.632119, best rearrangement setting 11 Bootstrap[539]: Time 0.008272 seconds, bootstrap likelihood -104.330055, best rearrangement setting 13 Bootstrap[706]: Time 0.004950 seconds, bootstrap likelihood -116.007450, best rearrangement setting 7 Bootstrap[205]: Time 0.008250 seconds, bootstrap likelihood -133.688062, best rearrangement setting 13 Bootstrap[39]: Time 0.007216 seconds, bootstrap likelihood -99.358861, best rearrangement setting 13 Bootstrap[540]: Time 0.005684 seconds, bootstrap likelihood -127.640295, best rearrangement setting 8 Bootstrap[372]: Time 0.008877 seconds, bootstrap likelihood -120.342540, best rearrangement setting 7 Bootstrap[872]: Time 0.018425 seconds, bootstrap likelihood -104.503281, best rearrangement setting 12 Bootstrap[707]: Time 0.008413 seconds, bootstrap likelihood -140.096011, best rearrangement setting 9 Bootstrap[206]: Time 0.007446 seconds, bootstrap likelihood -111.346138, best rearrangement setting 15Bootstrap[40]: Time 0.007050 seconds, bootstrap likelihood -111.680996, best rearrangement setting 13 Bootstrap[541]: Time 0.007581 seconds, bootstrap likelihood -120.131725, best rearrangement setting 13 Bootstrap[873]: Time 0.007602 seconds, bootstrap likelihood -120.930009, best rearrangement setting 12 Bootstrap[708]: Time 0.007457 seconds, bootstrap likelihood -123.364095, best rearrangement setting 13 Bootstrap[41]: Time 0.007040 seconds, bootstrap likelihood -124.517028, best rearrangement setting 10 Bootstrap[373]: Time 0.013107 seconds, bootstrap likelihood -101.014230, best rearrangement setting 6 Bootstrap[207]: Time 0.006728 seconds, bootstrap likelihood -126.750941, best rearrangement setting 13 Bootstrap[874]: Time 0.006539 seconds, bootstrap likelihood -98.279961, best rearrangement setting 11 Bootstrap[542]: Time 0.009531 seconds, bootstrap likelihood -138.414637, best rearrangement setting 8 Bootstrap[374]: Time 0.008246 seconds, bootstrap likelihood -107.014533, best rearrangement setting 13 Bootstrap[208]: Time 0.006919 seconds, bootstrap likelihood -137.266942, best rearrangement setting 13Bootstrap[709]: Time 0.012858 seconds, bootstrap likelihood -116.925671, best rearrangement setting 11 Bootstrap[875]: Time 0.007458 seconds, bootstrap likelihood -103.118358, best rearrangement setting 13 Bootstrap[375]: Time 0.004765 seconds, bootstrap likelihood -122.803617, best rearrangement setting 5 Bootstrap[876]: Time 0.008098 seconds, bootstrap likelihood -113.388986, best rearrangement setting 14 Bootstrap[209]: Time 0.005214 seconds, bootstrap likelihood -95.619899, best rearrangement setting 15 Bootstrap[543]: Time 0.006901 seconds, bootstrap likelihood -144.055311, best rearrangement setting 11 Bootstrap[877]: Time 0.005551 seconds, bootstrap likelihood -97.813121, best rearrangement setting 8 Bootstrap[42]: Time 0.008215 seconds, bootstrap likelihood -104.777114, best rearrangement setting 5 Bootstrap[710]: Time 0.009069 seconds, bootstrap likelihood -133.299708, best rearrangement setting 10 Bootstrap[376]: Time 0.009436 seconds, bootstrap likelihood -134.671976, best rearrangement setting 13 Bootstrap[210]: Time 0.006557 seconds, bootstrap likelihood -134.387361, best rearrangement setting 10 Bootstrap[878]: Time 0.006825 seconds, bootstrap likelihood -116.824801, best rearrangement setting 8 Bootstrap[43]: Time 0.006847 seconds, bootstrap likelihood -92.527012, best rearrangement setting 14 Bootstrap[544]: Time 0.009739 seconds, bootstrap likelihood -120.448529, best rearrangement setting 14 Bootstrap[711]: Time 0.006696 seconds, bootstrap likelihood -109.769312, best rearrangement setting 11 Bootstrap[211]: Time 0.007102 seconds, bootstrap likelihood -100.928483, best rearrangement setting 14 Bootstrap[377]: Time 0.008175 seconds, bootstrap likelihood -106.145825, best rearrangement setting 7 Bootstrap[879]: Time 0.010397 seconds, bootstrap likelihood -115.982236, best rearrangement setting 6 Bootstrap[44]: Time 0.007573 seconds, bootstrap likelihood -126.205255, best rearrangement setting 10 Bootstrap[545]: Time 0.004762 seconds, bootstrap likelihood -106.889726, best rearrangement setting 10 Bootstrap[712]: Time 0.009269 seconds, bootstrap likelihood -123.590546, best rearrangement setting 14 Bootstrap[212]: Time 0.007693 seconds, bootstrap likelihood -115.342723, best rearrangement setting 5 Bootstrap[378]: Time 0.008063 seconds, bootstrap likelihood -103.190019, best rearrangement setting 7 Bootstrap[880]: Time 0.010137 seconds, bootstrap likelihood -125.300664, best rearrangement setting 9 Bootstrap[45]: Time 0.008754 seconds, bootstrap likelihood -135.845373, best rearrangement setting 15 Bootstrap[546]: Time 0.008370 seconds, bootstrap likelihood -114.062961, best rearrangement setting 7 Bootstrap[713]: Time 0.008136 seconds, bootstrap likelihood -134.368536, best rearrangement setting 8 Bootstrap[213]: Time 0.006684 seconds, bootstrap likelihood -101.567273, best rearrangement setting 13 Bootstrap[881]: Time 0.006810 seconds, bootstrap likelihood -102.707025, best rearrangement setting 8 Bootstrap[379]: Time 0.008920 seconds, bootstrap likelihood -108.540380, best rearrangement setting 6 Bootstrap[547]: Time 0.006590 seconds, bootstrap likelihood -87.286018, best rearrangement setting 10 Bootstrap[46]: Time 0.010702 seconds, bootstrap likelihood -113.726482, best rearrangement setting 14 Bootstrap[214]: Time 0.007118 seconds, bootstrap likelihood -96.064925, best rearrangement setting 13 Bootstrap[714]: Time 0.007735 seconds, bootstrap likelihood -92.408589, best rearrangement setting 9 Bootstrap[882]: Time 0.006843 seconds, bootstrap likelihood -114.509461, best rearrangement setting 12 Bootstrap[380]: Time 0.008155 seconds, bootstrap likelihood -144.063788, best rearrangement setting 11 Bootstrap[548]: Time 0.007830 seconds, bootstrap likelihood -107.327649, best rearrangement setting 13 Bootstrap[47]: Time 0.007064 seconds, bootstrap likelihood -108.851575, best rearrangement setting 8 Bootstrap[715]: Time 0.008507 seconds, bootstrap likelihood -146.260600, best rearrangement setting 7 Bootstrap[215]: Time 0.010436 seconds, bootstrap likelihood -128.945852, best rearrangement setting 14 Bootstrap[883]: Time 0.008965 seconds, bootstrap likelihood -117.249895, best rearrangement setting 10 Bootstrap[381]: Time 0.008386 seconds, bootstrap likelihood -100.430228, best rearrangement setting 8 Bootstrap[549]: Time 0.008726 seconds, bootstrap likelihood -150.070273, best rearrangement setting 6 Bootstrap[884]: Time 0.004461 seconds, bootstrap likelihood -92.343708, best rearrangement setting 11 Bootstrap[48]: Time 0.011696 seconds, bootstrap likelihood -124.506662, best rearrangement setting 6 Bootstrap[216]: Time 0.009444 seconds, bootstrap likelihood -143.966384, best rearrangement setting 5 Bootstrap[716]: Time 0.011604 seconds, bootstrap likelihood -97.260784, best rearrangement setting 14 Bootstrap[382]: Time 0.006864 seconds, bootstrap likelihood -132.353049, best rearrangement setting 10Bootstrap[550]: Time 0.006843 seconds, bootstrap likelihood -94.555467, best rearrangement setting 14 Bootstrap[49]: Time 0.006267 seconds, bootstrap likelihood -131.723535, best rearrangement setting 7 Bootstrap[717]: Time 0.008205 seconds, bootstrap likelihood -116.423663, best rearrangement setting 12 Bootstrap[383]: Time 0.005487 seconds, bootstrap likelihood -107.081334, best rearrangement setting 15 Stopped Rapid BS search after 300 replicates with MRE-based Bootstopping criterion WRF Average of 100 random splits: 1.071895 % Overall Time for 300 Rapid Bootstraps 0.822647 seconds Average Time per Rapid Bootstrap 0.002742 seconds Starting ML Search ... Fast ML search on Process 3: Time 0.035337 seconds Fast ML search on Process 5: Time 0.036420 seconds Fast ML search on Process 2: Time 0.036779 seconds Fast ML search on Process 4: Time 0.038866 seconds Fast ML search on Process 1: Time 0.039168 seconds Fast ML optimization finished Fast ML search on Process 0: Time 0.044273 seconds Slow ML Search 501 Likelihood: -130.015168 Slow ML Search 835 Likelihood: -130.015168 Slow ML Search 502 Likelihood: -130.015168 Slow ML Search 334 Likelihood: -130.015168Slow ML Search 668 Likelihood: -130.015168 Slow ML Search 836 Likelihood: -130.015168 Slow ML Search 167 Likelihood: -130.015168 Slow ML Search 335 Likelihood: -130.015168 Slow ML search on Process 3: Time 0.027288 seconds Slow ML Search 669 Likelihood: -130.015168 Slow ML search on Process 5: Time 0.030911 seconds Slow ML Search 168 Likelihood: -130.015168 Slow ML search on Process 2: Time 0.032636 seconds Slow ML search on Process 4: Time 0.032592 seconds Slow ML Search 0 Likelihood: -130.015168 Slow ML search on Process 1: Time 0.035200 seconds Slow ML Search 1 Likelihood: -130.015168 Slow ML optimization finished Thorough ML search on Process 3: Time 0.012915 seconds Slow ML search on Process 0: Time 0.031019 seconds processID = 3, bestLH = -130.015168 Thorough ML search on Process 5: Time 0.012751 seconds processID = 5, bestLH = -130.015168 Thorough ML search on Process 2: Time 0.012971 seconds processID = 2, bestLH = -130.015168 Thorough ML search on Process 4: Time 0.013421 seconds processID = 4, bestLH = -130.015168 Thorough ML search on Process 1: Time 0.013065 seconds processID = 1, bestLH = -130.015168 Thorough ML search on Process 0: Time 0.013375 seconds processID = 0, bestLH = -130.015168 Final ML Optimization Likelihood: -130.015168 Model Information: Model Parameters of Partition 0, Name: No Name Provided, Type of Data: AA alpha: 0.846686 Tree-Length: 0.746939 rate A <-> R: 0.234172 rate A <-> N: 0.849957 rate A <-> D: 1.040763 rate A <-> C: 0.312229 rate A <-> Q: 0.771899 rate A <-> E: 1.717259 rate A <-> G: 2.081526 rate A <-> H: 0.199480 rate A <-> I: 0.563747 rate A <-> L: 0.355594 rate A <-> K: 0.225499 rate A <-> M: 0.624458 rate A <-> F: 0.156114 rate A <-> P: 2.168257 rate A <-> S: 3.547268 rate A <-> T: 3.217693 rate A <-> W: 0.000000 rate A <-> Y: 0.208153 rate A <-> V: 1.803990 rate R <-> N: 0.277537 rate R <-> D: 0.000000 rate R <-> C: 0.199480 rate R <-> Q: 2.133565 rate R <-> E: 0.008673 rate R <-> G: 0.078057 rate R <-> H: 2.081526 rate R <-> I: 0.555074 rate R <-> L: 0.130095 rate R <-> K: 4.024284 rate R <-> M: 0.780572 rate R <-> F: 0.121422 rate R <-> P: 0.893322 rate R <-> S: 1.335646 rate R <-> T: 0.225499 rate R <-> W: 1.743278 rate R <-> Y: 0.069384 rate R <-> V: 0.208153 rate N <-> D: 7.849089 rate N <-> C: 0.000000 rate N <-> Q: 0.893322 rate N <-> E: 1.283608 rate N <-> G: 1.205551 rate N <-> H: 4.640069 rate N <-> I: 0.667823 rate N <-> L: 0.294883 rate N <-> K: 2.758023 rate N <-> M: 0.008673 rate N <-> F: 0.121422 rate N <-> P: 0.364267 rate N <-> S: 4.293148 rate N <-> T: 1.986123 rate N <-> W: 0.199480 rate N <-> Y: 0.823938 rate N <-> V: 0.130095 rate D <-> C: 0.000000 rate D <-> Q: 1.162186 rate D <-> E: 10.000000 rate D <-> G: 1.084128 rate D <-> H: 0.745880 rate D <-> I: 0.208153 rate D <-> L: 0.000000 rate D <-> K: 0.615785 rate D <-> M: 0.000000 rate D <-> F: 0.000000 rate D <-> P: 0.112749 rate D <-> S: 0.823938 rate D <-> T: 0.572420 rate D <-> W: 0.000000 rate D <-> Y: 0.000000 rate D <-> V: 0.156114 rate C <-> Q: 0.000000 rate C <-> E: 0.000000 rate C <-> G: 0.095403 rate C <-> H: 0.242845 rate C <-> I: 0.381613 rate C <-> L: 0.000000 rate C <-> K: 0.000000 rate C <-> M: 0.000000 rate C <-> F: 0.000000 rate C <-> P: 0.164788 rate C <-> S: 1.396357 rate C <-> T: 0.138768 rate C <-> W: 0.000000 rate C <-> Y: 0.832611 rate C <-> V: 0.424978 rate Q <-> E: 6.209887 rate Q <-> G: 0.242845 rate Q <-> H: 5.255854 rate Q <-> I: 0.156114 rate Q <-> L: 0.633131 rate Q <-> K: 1.326973 rate Q <-> M: 0.988725 rate Q <-> F: 0.000000 rate Q <-> P: 1.326973 rate Q <-> S: 0.485690 rate Q <-> T: 0.459670 rate Q <-> W: 0.000000 rate Q <-> Y: 0.000000 rate Q <-> V: 0.303556 rate E <-> G: 0.702515 rate E <-> H: 0.372940 rate E <-> I: 0.529055 rate E <-> L: 0.095403 rate E <-> K: 0.719861 rate E <-> M: 0.260191 rate E <-> F: 0.000000 rate E <-> P: 0.442324 rate E <-> S: 0.685169 rate E <-> T: 0.294883 rate E <-> W: 0.000000 rate E <-> Y: 0.190807 rate E <-> V: 0.320902 rate G <-> H: 0.086730 rate G <-> I: 0.000000 rate G <-> L: 0.060711 rate G <-> K: 0.234172 rate G <-> M: 0.147441 rate G <-> F: 0.130095 rate G <-> P: 0.294883 rate G <-> S: 2.029488 rate G <-> T: 0.260191 rate G <-> W: 0.000000 rate G <-> Y: 0.000000 rate G <-> V: 0.468343 rate H <-> I: 0.060711 rate H <-> L: 0.381613 rate H <-> K: 0.225499 rate H <-> M: 0.000000 rate H <-> F: 0.416305 rate H <-> P: 0.815265 rate H <-> S: 0.303556 rate H <-> T: 0.190807 rate H <-> W: 0.234172 rate H <-> Y: 1.101474 rate H <-> V: 0.381613 rate I <-> L: 2.228968 rate I <-> K: 0.398959 rate I <-> M: 2.914137 rate I <-> F: 1.699913 rate I <-> P: 0.104076 rate I <-> S: 0.208153 rate I <-> T: 1.665221 rate I <-> W: 0.000000 rate I <-> Y: 0.320902 rate I <-> V: 7.710321 rate L <-> K: 0.156114 rate L <-> M: 4.570685 rate L <-> F: 1.361665 rate L <-> P: 0.277537 rate L <-> S: 0.147441 rate L <-> T: 0.286210 rate L <-> W: 0.398959 rate L <-> Y: 0.242845 rate L <-> V: 1.517780 rate K <-> M: 2.107546 rate K <-> F: 0.000000 rate K <-> P: 0.286210 rate K <-> S: 0.832611 rate K <-> T: 1.179532 rate K <-> W: 0.000000 rate K <-> Y: 0.112749 rate K <-> V: 0.086730 rate M <-> F: 0.797918 rate M <-> P: 0.147441 rate M <-> S: 0.537728 rate M <-> T: 0.901995 rate M <-> W: 0.000000 rate M <-> Y: 0.000000 rate M <-> V: 2.237641 rate F <-> P: 0.095403 rate F <-> S: 0.398959 rate F <-> T: 0.112749 rate F <-> W: 0.659150 rate F <-> Y: 6.053773 rate F <-> V: 0.104076 rate P <-> S: 2.124892 rate P <-> T: 0.676496 rate P <-> W: 0.000000 rate P <-> Y: 0.000000 rate P <-> V: 0.416305 rate S <-> T: 4.770165 rate S <-> W: 0.650477 rate S <-> Y: 0.294883 rate S <-> V: 0.260191 rate T <-> W: 0.000000 rate T <-> Y: 0.364267 rate T <-> V: 1.361665 rate W <-> Y: 0.529055 rate W <-> V: 0.000000 rate Y <-> V: 0.242845 freq pi(A): 0.087127 freq pi(R): 0.040904 freq pi(N): 0.040432 freq pi(D): 0.046872 freq pi(C): 0.033474 freq pi(Q): 0.038255 freq pi(E): 0.049530 freq pi(G): 0.088612 freq pi(H): 0.033618 freq pi(I): 0.036886 freq pi(L): 0.085357 freq pi(K): 0.080482 freq pi(M): 0.014753 freq pi(F): 0.039772 freq pi(P): 0.050680 freq pi(S): 0.069577 freq pi(T): 0.058542 freq pi(W): 0.010494 freq pi(Y): 0.029916 freq pi(V): 0.064717 ML search took 0.640950 secs or 0.000178 hours Combined Bootstrap and ML search took 1.467399 secs or 0.000408 hours Drawing Bootstrap Support Values on best-scoring ML tree ... Found 1 tree in File /projects/ps-ngbt/backend/comet_workspace/NGBW-JOB-RAXMLHPC2BB-A839A22ECB44461AA01C19670E72718F/RAxML_bestTree.result Found 1 tree in File /projects/ps-ngbt/backend/comet_workspace/NGBW-JOB-RAXMLHPC2BB-A839A22ECB44461AA01C19670E72718F/RAxML_bestTree.result Program execution info written to /projects/ps-ngbt/backend/comet_workspace/NGBW-JOB-RAXMLHPC2BB-A839A22ECB44461AA01C19670E72718F/RAxML_info.result All 300 bootstrapped trees written to: /projects/ps-ngbt/backend/comet_workspace/NGBW-JOB-RAXMLHPC2BB-A839A22ECB44461AA01C19670E72718F/RAxML_bootstrap.result Best-scoring ML tree written to: /projects/ps-ngbt/backend/comet_workspace/NGBW-JOB-RAXMLHPC2BB-A839A22ECB44461AA01C19670E72718F/RAxML_bestTree.result Best-scoring ML tree with support values written to: /projects/ps-ngbt/backend/comet_workspace/NGBW-JOB-RAXMLHPC2BB-A839A22ECB44461AA01C19670E72718F/RAxML_bipartitions.result Best-scoring ML tree with support values as branch labels written to: /projects/ps-ngbt/backend/comet_workspace/NGBW-JOB-RAXMLHPC2BB-A839A22ECB44461AA01C19670E72718F/RAxML_bipartitionsBranchLabels.result Overall execution time for full ML analysis: 1.491502 secs or 0.000414 hours or 0.000017 days