stdout.txt

Public content shared with everyone by Mark Miller

stdout.txt (45426 bytes)

CIPRES_THREADSPP=4

CIPRES_NP=6

running:

 raxmlHPC-HYBRID -T 4 -s infile -N autoMRE -n result -f a -p 12345 -x 12345 -m PROTCATDAYHOFF

CIPRES_THREADSPP=4

CIPRES_NP=6

running:

 raxmlHPC-HYBRID -T 4 -s infile -N autoMRE -n result -f a -p 12345 -x 12345 -m PROTCATDAYHOFF

CIPRES_THREADSPP=4

CIPRES_NP=6

running:

 raxmlHPC-HYBRID -T 4 -s infile -N autoMRE -n result -f a -p 12345 -x 12345 -m PROTCATDAYHOFF

CIPRES_THREADSPP=4

CIPRES_NP=6

running:

 raxmlHPC-HYBRID -T 4 -s infile -N autoMRE -n result -f a -p 12345 -x 12345 -m PROTCATDAYHOFF

CIPRES_THREADSPP=4

CIPRES_NP=6

running:

 raxmlHPC-HYBRID -T 4 -s infile -N autoMRE -n result -f a -p 12345 -x 12345 -m PROTCATDAYHOFF

CIPRES_THREADSPP=4

CIPRES_NP=6

running:

 raxmlHPC-HYBRID -T 4 -s infile -N autoMRE -n result -f a -p 12345 -x 12345 -m PROTCATDAYHOFF



This is RAxML MPI Process Number: 5



This is RAxML MPI Process Number: 0



This is RAxML MPI Process Number: 3



This is RAxML MPI Process Number: 1



This is RAxML MPI Process Number: 2



This is RAxML MPI Process Number: 4



This is the RAxML Master Pthread



This is the RAxML Master Pthread



This is the RAxML Master Pthread



This is the RAxML Master Pthread



This is the RAxML Master Pthread



This is the RAxML Master Pthread



This is RAxML Worker Pthread Number: 2



This is RAxML Worker Pthread Number: 3



This is RAxML Worker Pthread Number: 2



This is RAxML Worker Pthread Number: 1



This is RAxML Worker Pthread Number: 3



This is RAxML Worker Pthread Number: 1



This is RAxML Worker Pthread Number: 3



This is RAxML Worker Pthread Number: 2



This is RAxML Worker Pthread Number: 2



This is RAxML Worker Pthread Number: 3



This is RAxML Worker Pthread Number: 1



This is RAxML Worker Pthread Number: 2



This is RAxML Worker Pthread Number: 1



This is RAxML Worker Pthread Number: 3



This is RAxML Worker Pthread Number: 1



This is RAxML Worker Pthread Number: 2



This is RAxML Worker Pthread Number: 1



This is RAxML Worker Pthread Number: 3

Partition No Name Provided number 0 has a problem, the number of expected states is 20 the number of states that are present is 17.

Please go and fix your data!



Partition No Name Provided number 0 has a problem, the number of expected states is 20 the number of states that are present is 17.

Please go and fix your data!



Partition No Name Provided number 0 has a problem, the number of expected states is 20 the number of states that are present is 17.

Please go and fix your data!



Partition No Name Provided number 0 has a problem, the number of expected states is 20 the number of states that are present is 17.

Please go and fix your data!



Partition No Name Provided number 0 has a problem, the number of expected states is 20 the number of states that are present is 17.

Please go and fix your data!



Partition No Name Provided number 0 has a problem, the number of expected states is 20 the number of states that are present is 17.

Please go and fix your data!



Partition No Name Provided number 0 has a problem, the number of expected states is 20 the number of states that are present is 17.

Please go and fix your data!



Partition No Name Provided number 0 has a problem, the number of expected states is 20 the number of states that are present is 17.

Please go and fix your data!



Partition No Name Provided number 0 has a problem, the number of expected states is 20 the number of states that are present is 17.

Please go and fix your data!



Partition No Name Provided number 0 has a problem, the number of expected states is 20 the number of states that are present is 17.

Please go and fix your data!







This is RAxML version 8.2.12 released by Alexandros Stamatakis on May 2018.



With greatly appreciated code contributions by:

Andre Aberer      (HITS)

Simon Berger      (HITS)

Alexey Kozlov     (HITS)

Kassian Kobert    (HITS)

David Dao         (KIT and HITS)

Sarah Lutteropp   (KIT and HITS)

Nick Pattengale   (Sandia)

Wayne Pfeiffer    (SDSC)

Akifumi S. Tanabe (NRIFS)

Charlie Taylor    (UF)





Alignment has 17 distinct alignment patterns



Proportion of gaps and completely undetermined characters in this alignment: 0.00%



RAxML rapid bootstrapping and subsequent ML search



Using 1 distinct models/data partitions with joint branch length optimization







Executing 1000 rapid bootstrap inferences and thereafter a thorough ML search 



All free model parameters will be estimated by RAxML

ML estimate of 25 per site rate categories



Likelihood of final tree will be evaluated and optimized under GAMMA



GAMMA Model parameters will be estimated up to an accuracy of 0.1000000000 Log Likelihood units



Partition: 0

Alignment Patterns: 17

Name: No Name Provided

DataType: AA

Substitution Matrix: DAYHOFF

Using fixed base frequencies









RAxML was called as follows:



raxmlHPC-HYBRID -T 4 -s infile -N autoMRE -n result -f a -p 12345 -x 12345 -m PROTCATDAYHOFF 







Time for BS model parameter optimization on Process 5: 0.000779 seconds

Partition No Name Provided number 0 has a problem, the number of expected states is 20 the number of states that are present is 17.

Please go and fix your data!



Partition No Name Provided number 0 has a problem, the number of expected states is 20 the number of states that are present is 17.

Please go and fix your data!





Time for BS model parameter optimization on Process 2: 0.000775 seconds



Time for BS model parameter optimization on Process 3: 0.000845 seconds



Time for BS model parameter optimization on Process 4: 0.000784 seconds



Time for BS model parameter optimization on Process 1: 0.000834 seconds



Time for BS model parameter optimization on Process 0: 0.000818 seconds

Bootstrap[835]: Time 0.027670 seconds, bootstrap likelihood -100.234224, best rearrangement setting 6

Bootstrap[501]: Time 0.033689 seconds, bootstrap likelihood -112.231970, best rearrangement setting 9

Bootstrap[334]: Time 0.030539 seconds, bootstrap likelihood -152.543416, best rearrangement setting 10

Bootstrap[167]: Time 0.035280 seconds, bootstrap likelihood -146.373721, best rearrangement setting 12

Bootstrap[836]: Time 0.004927 seconds, bootstrap likelihood -107.617542, best rearrangement setting 15

Bootstrap[0]: Time 0.026597 seconds, bootstrap likelihood -127.783435, best rearrangement setting 13

Bootstrap[668]: Time 0.044886 seconds, bootstrap likelihood -126.516625, best rearrangement setting 8

Bootstrap[502]: Time 0.010091 seconds, bootstrap likelihood -113.602583, best rearrangement setting 14

Bootstrap[168]: Time 0.009192 seconds, bootstrap likelihood -96.918054, best rearrangement setting 13

Bootstrap[335]: Time 0.010500 seconds, bootstrap likelihood -134.952733, best rearrangement setting 13

Bootstrap[837]: Time 0.007833 seconds, bootstrap likelihood -129.767757, best rearrangement setting 6

Bootstrap[1]: Time 0.007643 seconds, bootstrap likelihood -111.177190, best rearrangement setting 13

Bootstrap[669]: Time 0.008578 seconds, bootstrap likelihood -116.527671, best rearrangement setting 14

Bootstrap[503]: Time 0.007206 seconds, bootstrap likelihood -129.956706, best rearrangement setting 15

Bootstrap[336]: Time 0.006376 seconds, bootstrap likelihood -104.187796, best rearrangement setting 14

Bootstrap[169]: Time 0.010148 seconds, bootstrap likelihood -113.572876, best rearrangement setting 13

Bootstrap[838]: Time 0.007409 seconds, bootstrap likelihood -117.629887, best rearrangement setting 13

Bootstrap[670]: Time 0.005129 seconds, bootstrap likelihood -104.202046, best rearrangement setting 5

Bootstrap[2]: Time 0.007515 seconds, bootstrap likelihood -94.966477, best rearrangement setting 12

Bootstrap[337]: Time 0.007587 seconds, bootstrap likelihood -100.002479, best rearrangement setting 8

Bootstrap[839]: Time 0.008436 seconds, bootstrap likelihood -132.136995, best rearrangement setting 14

Bootstrap[504]: Time 0.014893 seconds, bootstrap likelihood -141.572958, best rearrangement setting 10

Bootstrap[671]: Time 0.008333 seconds, bootstrap likelihood -103.647795, best rearrangement setting 11

Bootstrap[3]: Time 0.008254 seconds, bootstrap likelihood -106.860063, best rearrangement setting 15

Bootstrap[840]: Time 0.004071 seconds, bootstrap likelihood -87.594342, best rearrangement setting 5

Bootstrap[505]: Time 0.005939 seconds, bootstrap likelihood -100.687313, best rearrangement setting 10

Bootstrap[338]: Time 0.012947 seconds, bootstrap likelihood -112.710358, best rearrangement setting 14

Bootstrap[672]: Time 0.008690 seconds, bootstrap likelihood -127.658525, best rearrangement setting 6

Bootstrap[4]: Time 0.006775 seconds, bootstrap likelihood -98.273093, best rearrangement setting 10

Bootstrap[506]: Time 0.004517 seconds, bootstrap likelihood -97.959832, best rearrangement setting 13

Bootstrap[841]: Time 0.010745 seconds, bootstrap likelihood -107.070455, best rearrangement setting 5

Bootstrap[339]: Time 0.008203 seconds, bootstrap likelihood -115.786266, best rearrangement setting 12

Bootstrap[170]: Time 0.035963 seconds, bootstrap likelihood -111.453124, best rearrangement setting 6

Bootstrap[5]: Time 0.006966 seconds, bootstrap likelihood -113.241008, best rearrangement setting 10

Bootstrap[673]: Time 0.009675 seconds, bootstrap likelihood -119.714132, best rearrangement setting 15

Bootstrap[507]: Time 0.008225 seconds, bootstrap likelihood -111.657909, best rearrangement setting 7

Bootstrap[842]: Time 0.008163 seconds, bootstrap likelihood -130.809814, best rearrangement setting 11

Bootstrap[340]: Time 0.008209 seconds, bootstrap likelihood -122.821262, best rearrangement setting 14

Bootstrap[6]: Time 0.008716 seconds, bootstrap likelihood -96.233935, best rearrangement setting 6

Bootstrap[508]: Time 0.006226 seconds, bootstrap likelihood -111.139937, best rearrangement setting 10

Bootstrap[674]: Time 0.007484 seconds, bootstrap likelihood -110.537863, best rearrangement setting 11

Bootstrap[843]: Time 0.007991 seconds, bootstrap likelihood -132.648094, best rearrangement setting 14

Bootstrap[171]: Time 0.016578 seconds, bootstrap likelihood -103.454008, best rearrangement setting 7

Bootstrap[341]: Time 0.008055 seconds, bootstrap likelihood -142.300616, best rearrangement setting 15

Bootstrap[675]: Time 0.007035 seconds, bootstrap likelihood -113.344579, best rearrangement setting 5

Bootstrap[7]: Time 0.009505 seconds, bootstrap likelihood -115.046191, best rearrangement setting 14

Bootstrap[509]: Time 0.007175 seconds, bootstrap likelihood -138.682112, best rearrangement setting 10

Bootstrap[172]: Time 0.005897 seconds, bootstrap likelihood -100.801055, best rearrangement setting 11

Bootstrap[342]: Time 0.006686 seconds, bootstrap likelihood -118.329414, best rearrangement setting 9

Bootstrap[676]: Time 0.006736 seconds, bootstrap likelihood -105.745678, best rearrangement setting 12

Bootstrap[173]: Time 0.006982 seconds, bootstrap likelihood -122.109671, best rearrangement setting 10

Bootstrap[8]: Time 0.009474 seconds, bootstrap likelihood -137.543526, best rearrangement setting 5

Bootstrap[174]: Time 0.007287 seconds, bootstrap likelihood -127.800414, best rearrangement setting 9

Bootstrap[175]: Time 0.006672 seconds, bootstrap likelihood -124.635286, best rearrangement setting 7

Bootstrap[343]: Time 0.004111 seconds, bootstrap likelihood -76.773618, best rearrangement setting 6

Bootstrap[677]: Time 0.006463 seconds, bootstrap likelihood -97.844603, best rearrangement setting 6

Bootstrap[9]: Time 0.007687 seconds, bootstrap likelihood -96.627353, best rearrangement setting 7

Bootstrap[510]: Time 0.007788 seconds, bootstrap likelihood -123.662701, best rearrangement setting 12

Bootstrap[844]: Time 0.008245 seconds, bootstrap likelihood -97.696395, best rearrangement setting 11

Bootstrap[176]: Time 0.008732 seconds, bootstrap likelihood -104.842688, best rearrangement setting 12Bootstrap[344]: Time 0.007796 seconds, bootstrap likelihood -115.314274, best rearrangement setting 13



Bootstrap[845]: Time 0.006906 seconds, bootstrap likelihood -124.330922, best rearrangement setting 10

Bootstrap[511]: Time 0.008699 seconds, bootstrap likelihood -104.371677, best rearrangement setting 5

Bootstrap[678]: Time 0.012857 seconds, bootstrap likelihood -116.170323, best rearrangement setting 7

Bootstrap[345]: Time 0.008531 seconds, bootstrap likelihood -107.887902, best rearrangement setting 7

Bootstrap[177]: Time 0.007424 seconds, bootstrap likelihood -110.393166, best rearrangement setting 10

Bootstrap[10]: Time 0.013409 seconds, bootstrap likelihood -117.066772, best rearrangement setting 7

Bootstrap[846]: Time 0.006965 seconds, bootstrap likelihood -91.298787, best rearrangement setting 11

Bootstrap[512]: Time 0.008686 seconds, bootstrap likelihood -125.945804, best rearrangement setting 9

Bootstrap[346]: Time 0.010045 seconds, bootstrap likelihood -152.018413, best rearrangement setting 11

Bootstrap[679]: Time 0.011735 seconds, bootstrap likelihood -113.231046, best rearrangement setting 10

Bootstrap[178]: Time 0.008473 seconds, bootstrap likelihood -117.145402, best rearrangement setting 6

Bootstrap[11]: Time 0.006955 seconds, bootstrap likelihood -133.388312, best rearrangement setting 5

Bootstrap[847]: Time 0.009024 seconds, bootstrap likelihood -117.793248, best rearrangement setting 9

Bootstrap[513]: Time 0.008463 seconds, bootstrap likelihood -103.910997, best rearrangement setting 7

Bootstrap[347]: Time 0.006560 seconds, bootstrap likelihood -142.184533, best rearrangement setting 10

Bootstrap[12]: Time 0.005450 seconds, bootstrap likelihood -114.877538, best rearrangement setting 8

Bootstrap[680]: Time 0.009219 seconds, bootstrap likelihood -129.904636, best rearrangement setting 13

Bootstrap[848]: Time 0.007332 seconds, bootstrap likelihood -149.228682, best rearrangement setting 5

Bootstrap[514]: Time 0.006708 seconds, bootstrap likelihood -113.047540, best rearrangement setting 12

Bootstrap[179]: Time 0.015560 seconds, bootstrap likelihood -99.476921, best rearrangement setting 15

Bootstrap[348]: Time 0.007143 seconds, bootstrap likelihood -121.538917, best rearrangement setting 7

Bootstrap[13]: Time 0.007476 seconds, bootstrap likelihood -120.179845, best rearrangement setting 7

Bootstrap[681]: Time 0.007827 seconds, bootstrap likelihood -134.695351, best rearrangement setting 14

Bootstrap[849]: Time 0.009478 seconds, bootstrap likelihood -141.945820, best rearrangement setting 5

Bootstrap[515]: Time 0.007554 seconds, bootstrap likelihood -112.959610, best rearrangement setting 10

Bootstrap[180]: Time 0.005875 seconds, bootstrap likelihood -95.103652, best rearrangement setting 9

Bootstrap[349]: Time 0.004463 seconds, bootstrap likelihood -108.070500, best rearrangement setting 14

Bootstrap[14]: Time 0.008041 seconds, bootstrap likelihood -111.993314, best rearrangement setting 12

Bootstrap[850]: Time 0.006962 seconds, bootstrap likelihood -112.234915, best rearrangement setting 12

Bootstrap[682]: Time 0.009369 seconds, bootstrap likelihood -126.558993, best rearrangement setting 13

Bootstrap[516]: Time 0.008140 seconds, bootstrap likelihood -107.445176, best rearrangement setting 13

Bootstrap[350]: Time 0.005794 seconds, bootstrap likelihood -136.168891, best rearrangement setting 13Bootstrap[181]: Time 0.008273 seconds, bootstrap likelihood -156.040676, best rearrangement setting 15



Bootstrap[15]: Time 0.008958 seconds, bootstrap likelihood -105.448909, best rearrangement setting 15

Bootstrap[851]: Time 0.006354 seconds, bootstrap likelihood -123.145159, best rearrangement setting 9

Bootstrap[182]: Time 0.004744 seconds, bootstrap likelihood -110.427680, best rearrangement setting 14

Bootstrap[683]: Time 0.008669 seconds, bootstrap likelihood -118.516939, best rearrangement setting 13

Bootstrap[517]: Time 0.007804 seconds, bootstrap likelihood -134.035573, best rearrangement setting 8

Bootstrap[16]: Time 0.005531 seconds, bootstrap likelihood -105.955970, best rearrangement setting 12

Bootstrap[183]: Time 0.007269 seconds, bootstrap likelihood -105.309398, best rearrangement setting 7

Bootstrap[684]: Time 0.007042 seconds, bootstrap likelihood -117.678985, best rearrangement setting 14

Bootstrap[351]: Time 0.004598 seconds, bootstrap likelihood -94.655764, best rearrangement setting 12

Bootstrap[685]: Time 0.004854 seconds, bootstrap likelihood -124.860998, best rearrangement setting 12

Bootstrap[184]: Time 0.004843 seconds, bootstrap likelihood -93.334353, best rearrangement setting 12

Bootstrap[852]: Time 0.009379 seconds, bootstrap likelihood -124.217429, best rearrangement setting 12

Bootstrap[17]: Time 0.009440 seconds, bootstrap likelihood -130.676235, best rearrangement setting 12

Bootstrap[686]: Time 0.005539 seconds, bootstrap likelihood -95.634029, best rearrangement setting 9

Bootstrap[518]: Time 0.015231 seconds, bootstrap likelihood -132.333102, best rearrangement setting 12

Bootstrap[352]: Time 0.007847 seconds, bootstrap likelihood -136.291405, best rearrangement setting 12Bootstrap[185]: Time 0.005040 seconds, bootstrap likelihood -115.665778, best rearrangement setting 14



Bootstrap[853]: Time 0.008559 seconds, bootstrap likelihood -152.931034, best rearrangement setting 7

Bootstrap[18]: Time 0.008574 seconds, bootstrap likelihood -120.731648, best rearrangement setting 5

Bootstrap[519]: Time 0.007656 seconds, bootstrap likelihood -123.586448, best rearrangement setting 11

Bootstrap[186]: Time 0.007599 seconds, bootstrap likelihood -119.035044, best rearrangement setting 6

Bootstrap[353]: Time 0.008395 seconds, bootstrap likelihood -132.441966, best rearrangement setting 15

Bootstrap[19]: Time 0.005997 seconds, bootstrap likelihood -108.820873, best rearrangement setting 8

Bootstrap[854]: Time 0.008586 seconds, bootstrap likelihood -129.127067, best rearrangement setting 8

Bootstrap[687]: Time 0.015376 seconds, bootstrap likelihood -126.268378, best rearrangement setting 10

Bootstrap[520]: Time 0.007183 seconds, bootstrap likelihood -115.762645, best rearrangement setting 13

Bootstrap[187]: Time 0.005525 seconds, bootstrap likelihood -104.221439, best rearrangement setting 8

Bootstrap[354]: Time 0.006556 seconds, bootstrap likelihood -106.332982, best rearrangement setting 7

Bootstrap[20]: Time 0.006773 seconds, bootstrap likelihood -131.325520, best rearrangement setting 10

Bootstrap[855]: Time 0.006819 seconds, bootstrap likelihood -124.528965, best rearrangement setting 13

Bootstrap[688]: Time 0.008295 seconds, bootstrap likelihood -113.597612, best rearrangement setting 15

Bootstrap[521]: Time 0.006541 seconds, bootstrap likelihood -122.484418, best rearrangement setting 5

Bootstrap[188]: Time 0.008506 seconds, bootstrap likelihood -125.057068, best rearrangement setting 9

Bootstrap[21]: Time 0.006839 seconds, bootstrap likelihood -86.145523, best rearrangement setting 6

Bootstrap[856]: Time 0.007822 seconds, bootstrap likelihood -144.922561, best rearrangement setting 11

Bootstrap[689]: Time 0.006877 seconds, bootstrap likelihood -126.954213, best rearrangement setting 8

Bootstrap[355]: Time 0.014218 seconds, bootstrap likelihood -129.850253, best rearrangement setting 12

Bootstrap[522]: Time 0.008399 seconds, bootstrap likelihood -151.723785, best rearrangement setting 15

Bootstrap[189]: Time 0.007584 seconds, bootstrap likelihood -90.833284, best rearrangement setting 8

Bootstrap[22]: Time 0.006416 seconds, bootstrap likelihood -140.317637, best rearrangement setting 5

Bootstrap[857]: Time 0.007719 seconds, bootstrap likelihood -104.792027, best rearrangement setting 12

Bootstrap[356]: Time 0.007430 seconds, bootstrap likelihood -111.823809, best rearrangement setting 12

Bootstrap[523]: Time 0.007051 seconds, bootstrap likelihood -136.752241, best rearrangement setting 5

Bootstrap[190]: Time 0.005845 seconds, bootstrap likelihood -101.518065, best rearrangement setting 8

Bootstrap[858]: Time 0.007287 seconds, bootstrap likelihood -116.161381, best rearrangement setting 12

Bootstrap[524]: Time 0.005293 seconds, bootstrap likelihood -110.869909, best rearrangement setting 10

Bootstrap[357]: Time 0.007454 seconds, bootstrap likelihood -111.351695, best rearrangement setting 9

Bootstrap[23]: Time 0.013123 seconds, bootstrap likelihood -94.461980, best rearrangement setting 7

Bootstrap[191]: Time 0.007701 seconds, bootstrap likelihood -104.702718, best rearrangement setting 7

Bootstrap[690]: Time 0.028939 seconds, bootstrap likelihood -106.215387, best rearrangement setting 8

Bootstrap[525]: Time 0.008997 seconds, bootstrap likelihood -109.522861, best rearrangement setting 7

Bootstrap[358]: Time 0.007221 seconds, bootstrap likelihood -86.161842, best rearrangement setting 7Bootstrap[24]: Time 0.006941 seconds, bootstrap likelihood -98.844567, best rearrangement setting 8



Bootstrap[859]: Time 0.014879 seconds, bootstrap likelihood -99.025776, best rearrangement setting 6

Bootstrap[691]: Time 0.006380 seconds, bootstrap likelihood -94.754213, best rearrangement setting 11

Bootstrap[692]: Time 0.007348 seconds, bootstrap likelihood -128.380746, best rearrangement setting 7

Bootstrap[192]: Time 0.005212 seconds, bootstrap likelihood -120.991967, best rearrangement setting 7

Bootstrap[860]: Time 0.008061 seconds, bootstrap likelihood -86.435354, best rearrangement setting 12

Bootstrap[359]: Time 0.008600 seconds, bootstrap likelihood -98.391082, best rearrangement setting 9Bootstrap[25]: Time 0.008612 seconds, bootstrap likelihood -107.910701, best rearrangement setting 6



Bootstrap[526]: Time 0.008794 seconds, bootstrap likelihood -121.557998, best rearrangement setting 10

Bootstrap[693]: Time 0.008696 seconds, bootstrap likelihood -102.310844, best rearrangement setting 11

Bootstrap[193]: Time 0.004749 seconds, bootstrap likelihood -118.088727, best rearrangement setting 15

Bootstrap[861]: Time 0.008059 seconds, bootstrap likelihood -102.448082, best rearrangement setting 5

Bootstrap[26]: Time 0.008026 seconds, bootstrap likelihood -121.656009, best rearrangement setting 12

Bootstrap[360]: Time 0.008444 seconds, bootstrap likelihood -108.272496, best rearrangement setting 7

Bootstrap[694]: Time 0.006954 seconds, bootstrap likelihood -118.071712, best rearrangement setting 13

Bootstrap[194]: Time 0.007448 seconds, bootstrap likelihood -117.864167, best rearrangement setting 8

Bootstrap[527]: Time 0.010128 seconds, bootstrap likelihood -107.924174, best rearrangement setting 10

Bootstrap[862]: Time 0.007603 seconds, bootstrap likelihood -98.182673, best rearrangement setting 8

Bootstrap[27]: Time 0.007306 seconds, bootstrap likelihood -126.496631, best rearrangement setting 10

Bootstrap[361]: Time 0.009391 seconds, bootstrap likelihood -110.806644, best rearrangement setting 5

Bootstrap[195]: Time 0.005874 seconds, bootstrap likelihood -93.503746, best rearrangement setting 6

Bootstrap[695]: Time 0.009041 seconds, bootstrap likelihood -103.688669, best rearrangement setting 11

Bootstrap[863]: Time 0.004545 seconds, bootstrap likelihood -127.081933, best rearrangement setting 8

Bootstrap[528]: Time 0.009428 seconds, bootstrap likelihood -125.598736, best rearrangement setting 13

Bootstrap[28]: Time 0.007768 seconds, bootstrap likelihood -124.744345, best rearrangement setting 11

Bootstrap[864]: Time 0.004992 seconds, bootstrap likelihood -101.731456, best rearrangement setting 8

Bootstrap[362]: Time 0.008297 seconds, bootstrap likelihood -104.164917, best rearrangement setting 12

Bootstrap[196]: Time 0.008036 seconds, bootstrap likelihood -138.007209, best rearrangement setting 14

Bootstrap[696]: Time 0.010030 seconds, bootstrap likelihood -123.380815, best rearrangement setting 13

Bootstrap[529]: Time 0.011003 seconds, bootstrap likelihood -134.610678, best rearrangement setting 7

Bootstrap[29]: Time 0.009422 seconds, bootstrap likelihood -88.913450, best rearrangement setting 12

Bootstrap[197]: Time 0.008001 seconds, bootstrap likelihood -80.939286, best rearrangement setting 5

Bootstrap[363]: Time 0.010401 seconds, bootstrap likelihood -115.979160, best rearrangement setting 15

Bootstrap[865]: Time 0.019656 seconds, bootstrap likelihood -127.507033, best rearrangement setting 6

Bootstrap[697]: Time 0.007506 seconds, bootstrap likelihood -110.717948, best rearrangement setting 7

Bootstrap[530]: Time 0.008474 seconds, bootstrap likelihood -126.690120, best rearrangement setting 5

Bootstrap[364]: Time 0.004353 seconds, bootstrap likelihood -135.535353, best rearrangement setting 5

Bootstrap[198]: Time 0.005998 seconds, bootstrap likelihood -97.116152, best rearrangement setting 7

Bootstrap[866]: Time 0.007080 seconds, bootstrap likelihood -130.987403, best rearrangement setting 6

Bootstrap[30]: Time 0.012604 seconds, bootstrap likelihood -113.839304, best rearrangement setting 15

Bootstrap[698]: Time 0.007366 seconds, bootstrap likelihood -113.311573, best rearrangement setting 6

Bootstrap[365]: Time 0.005322 seconds, bootstrap likelihood -134.816454, best rearrangement setting 9

Bootstrap[531]: Time 0.008379 seconds, bootstrap likelihood -90.934039, best rearrangement setting 5

Bootstrap[199]: Time 0.005408 seconds, bootstrap likelihood -120.766702, best rearrangement setting 7

Bootstrap[31]: Time 0.004812 seconds, bootstrap likelihood -113.402247, best rearrangement setting 15

Bootstrap[699]: Time 0.007317 seconds, bootstrap likelihood -133.449482, best rearrangement setting 14

Bootstrap[867]: Time 0.010677 seconds, bootstrap likelihood -105.380656, best rearrangement setting 12

Bootstrap[32]: Time 0.006824 seconds, bootstrap likelihood -129.429747, best rearrangement setting 6

Bootstrap[200]: Time 0.008074 seconds, bootstrap likelihood -146.071801, best rearrangement setting 14

Bootstrap[366]: Time 0.016486 seconds, bootstrap likelihood -118.138389, best rearrangement setting 8

Bootstrap[532]: Time 0.015216 seconds, bootstrap likelihood -83.381376, best rearrangement setting 12

Bootstrap[700]: Time 0.008908 seconds, bootstrap likelihood -97.615062, best rearrangement setting 11

Bootstrap[868]: Time 0.007629 seconds, bootstrap likelihood -116.011302, best rearrangement setting 10

Bootstrap[33]: Time 0.010225 seconds, bootstrap likelihood -108.706746, best rearrangement setting 15

Bootstrap[367]: Time 0.007606 seconds, bootstrap likelihood -142.446959, best rearrangement setting 13

Bootstrap[533]: Time 0.007276 seconds, bootstrap likelihood -118.223300, best rearrangement setting 10

Bootstrap[701]: Time 0.007109 seconds, bootstrap likelihood -127.142002, best rearrangement setting 11

Bootstrap[534]: Time 0.004447 seconds, bootstrap likelihood -117.115576, best rearrangement setting 12

Bootstrap[201]: Time 0.005995 seconds, bootstrap likelihood -123.180581, best rearrangement setting 8

Bootstrap[34]: Time 0.006399 seconds, bootstrap likelihood -112.631470, best rearrangement setting 11

Bootstrap[702]: Time 0.007406 seconds, bootstrap likelihood -100.271300, best rearrangement setting 10

Bootstrap[535]: Time 0.007696 seconds, bootstrap likelihood -116.135908, best rearrangement setting 13

Bootstrap[869]: Time 0.008251 seconds, bootstrap likelihood -113.135255, best rearrangement setting 8

Bootstrap[368]: Time 0.009882 seconds, bootstrap likelihood -93.722235, best rearrangement setting 5

Bootstrap[202]: Time 0.007997 seconds, bootstrap likelihood -88.183076, best rearrangement setting 14Bootstrap[35]: Time 0.007078 seconds, bootstrap likelihood -101.138306, best rearrangement setting 8



Bootstrap[536]: Time 0.005876 seconds, bootstrap likelihood -96.175316, best rearrangement setting 13

Bootstrap[703]: Time 0.012301 seconds, bootstrap likelihood -104.550318, best rearrangement setting 8

Bootstrap[36]: Time 0.004370 seconds, bootstrap likelihood -109.704416, best rearrangement setting 9

Bootstrap[870]: Time 0.007961 seconds, bootstrap likelihood -123.226480, best rearrangement setting 13

Bootstrap[537]: Time 0.004655 seconds, bootstrap likelihood -98.675990, best rearrangement setting 11

Bootstrap[369]: Time 0.009681 seconds, bootstrap likelihood -121.870839, best rearrangement setting 8

Bootstrap[203]: Time 0.006723 seconds, bootstrap likelihood -120.561641, best rearrangement setting 6

Bootstrap[704]: Time 0.008766 seconds, bootstrap likelihood -139.852754, best rearrangement setting 9

Bootstrap[37]: Time 0.009872 seconds, bootstrap likelihood -113.553599, best rearrangement setting 11

Bootstrap[871]: Time 0.008115 seconds, bootstrap likelihood -86.103694, best rearrangement setting 6

Bootstrap[538]: Time 0.007751 seconds, bootstrap likelihood -138.250907, best rearrangement setting 12

Bootstrap[370]: Time 0.011037 seconds, bootstrap likelihood -133.317405, best rearrangement setting 14

Bootstrap[204]: Time 0.008191 seconds, bootstrap likelihood -106.878963, best rearrangement setting 11

Bootstrap[705]: Time 0.008375 seconds, bootstrap likelihood -94.485814, best rearrangement setting 12

Bootstrap[38]: Time 0.008740 seconds, bootstrap likelihood -133.493984, best rearrangement setting 8

Bootstrap[371]: Time 0.005716 seconds, bootstrap likelihood -115.632119, best rearrangement setting 11

Bootstrap[539]: Time 0.008272 seconds, bootstrap likelihood -104.330055, best rearrangement setting 13

Bootstrap[706]: Time 0.004950 seconds, bootstrap likelihood -116.007450, best rearrangement setting 7

Bootstrap[205]: Time 0.008250 seconds, bootstrap likelihood -133.688062, best rearrangement setting 13

Bootstrap[39]: Time 0.007216 seconds, bootstrap likelihood -99.358861, best rearrangement setting 13

Bootstrap[540]: Time 0.005684 seconds, bootstrap likelihood -127.640295, best rearrangement setting 8

Bootstrap[372]: Time 0.008877 seconds, bootstrap likelihood -120.342540, best rearrangement setting 7

Bootstrap[872]: Time 0.018425 seconds, bootstrap likelihood -104.503281, best rearrangement setting 12

Bootstrap[707]: Time 0.008413 seconds, bootstrap likelihood -140.096011, best rearrangement setting 9

Bootstrap[206]: Time 0.007446 seconds, bootstrap likelihood -111.346138, best rearrangement setting 15Bootstrap[40]: Time 0.007050 seconds, bootstrap likelihood -111.680996, best rearrangement setting 13



Bootstrap[541]: Time 0.007581 seconds, bootstrap likelihood -120.131725, best rearrangement setting 13

Bootstrap[873]: Time 0.007602 seconds, bootstrap likelihood -120.930009, best rearrangement setting 12

Bootstrap[708]: Time 0.007457 seconds, bootstrap likelihood -123.364095, best rearrangement setting 13

Bootstrap[41]: Time 0.007040 seconds, bootstrap likelihood -124.517028, best rearrangement setting 10

Bootstrap[373]: Time 0.013107 seconds, bootstrap likelihood -101.014230, best rearrangement setting 6

Bootstrap[207]: Time 0.006728 seconds, bootstrap likelihood -126.750941, best rearrangement setting 13

Bootstrap[874]: Time 0.006539 seconds, bootstrap likelihood -98.279961, best rearrangement setting 11

Bootstrap[542]: Time 0.009531 seconds, bootstrap likelihood -138.414637, best rearrangement setting 8

Bootstrap[374]: Time 0.008246 seconds, bootstrap likelihood -107.014533, best rearrangement setting 13

Bootstrap[208]: Time 0.006919 seconds, bootstrap likelihood -137.266942, best rearrangement setting 13Bootstrap[709]: Time 0.012858 seconds, bootstrap likelihood -116.925671, best rearrangement setting 11



Bootstrap[875]: Time 0.007458 seconds, bootstrap likelihood -103.118358, best rearrangement setting 13

Bootstrap[375]: Time 0.004765 seconds, bootstrap likelihood -122.803617, best rearrangement setting 5

Bootstrap[876]: Time 0.008098 seconds, bootstrap likelihood -113.388986, best rearrangement setting 14

Bootstrap[209]: Time 0.005214 seconds, bootstrap likelihood -95.619899, best rearrangement setting 15

Bootstrap[543]: Time 0.006901 seconds, bootstrap likelihood -144.055311, best rearrangement setting 11

Bootstrap[877]: Time 0.005551 seconds, bootstrap likelihood -97.813121, best rearrangement setting 8

Bootstrap[42]: Time 0.008215 seconds, bootstrap likelihood -104.777114, best rearrangement setting 5

Bootstrap[710]: Time 0.009069 seconds, bootstrap likelihood -133.299708, best rearrangement setting 10

Bootstrap[376]: Time 0.009436 seconds, bootstrap likelihood -134.671976, best rearrangement setting 13

Bootstrap[210]: Time 0.006557 seconds, bootstrap likelihood -134.387361, best rearrangement setting 10

Bootstrap[878]: Time 0.006825 seconds, bootstrap likelihood -116.824801, best rearrangement setting 8

Bootstrap[43]: Time 0.006847 seconds, bootstrap likelihood -92.527012, best rearrangement setting 14

Bootstrap[544]: Time 0.009739 seconds, bootstrap likelihood -120.448529, best rearrangement setting 14

Bootstrap[711]: Time 0.006696 seconds, bootstrap likelihood -109.769312, best rearrangement setting 11

Bootstrap[211]: Time 0.007102 seconds, bootstrap likelihood -100.928483, best rearrangement setting 14

Bootstrap[377]: Time 0.008175 seconds, bootstrap likelihood -106.145825, best rearrangement setting 7

Bootstrap[879]: Time 0.010397 seconds, bootstrap likelihood -115.982236, best rearrangement setting 6

Bootstrap[44]: Time 0.007573 seconds, bootstrap likelihood -126.205255, best rearrangement setting 10

Bootstrap[545]: Time 0.004762 seconds, bootstrap likelihood -106.889726, best rearrangement setting 10

Bootstrap[712]: Time 0.009269 seconds, bootstrap likelihood -123.590546, best rearrangement setting 14

Bootstrap[212]: Time 0.007693 seconds, bootstrap likelihood -115.342723, best rearrangement setting 5

Bootstrap[378]: Time 0.008063 seconds, bootstrap likelihood -103.190019, best rearrangement setting 7

Bootstrap[880]: Time 0.010137 seconds, bootstrap likelihood -125.300664, best rearrangement setting 9

Bootstrap[45]: Time 0.008754 seconds, bootstrap likelihood -135.845373, best rearrangement setting 15

Bootstrap[546]: Time 0.008370 seconds, bootstrap likelihood -114.062961, best rearrangement setting 7

Bootstrap[713]: Time 0.008136 seconds, bootstrap likelihood -134.368536, best rearrangement setting 8

Bootstrap[213]: Time 0.006684 seconds, bootstrap likelihood -101.567273, best rearrangement setting 13

Bootstrap[881]: Time 0.006810 seconds, bootstrap likelihood -102.707025, best rearrangement setting 8

Bootstrap[379]: Time 0.008920 seconds, bootstrap likelihood -108.540380, best rearrangement setting 6

Bootstrap[547]: Time 0.006590 seconds, bootstrap likelihood -87.286018, best rearrangement setting 10

Bootstrap[46]: Time 0.010702 seconds, bootstrap likelihood -113.726482, best rearrangement setting 14

Bootstrap[214]: Time 0.007118 seconds, bootstrap likelihood -96.064925, best rearrangement setting 13

Bootstrap[714]: Time 0.007735 seconds, bootstrap likelihood -92.408589, best rearrangement setting 9

Bootstrap[882]: Time 0.006843 seconds, bootstrap likelihood -114.509461, best rearrangement setting 12

Bootstrap[380]: Time 0.008155 seconds, bootstrap likelihood -144.063788, best rearrangement setting 11

Bootstrap[548]: Time 0.007830 seconds, bootstrap likelihood -107.327649, best rearrangement setting 13

Bootstrap[47]: Time 0.007064 seconds, bootstrap likelihood -108.851575, best rearrangement setting 8

Bootstrap[715]: Time 0.008507 seconds, bootstrap likelihood -146.260600, best rearrangement setting 7

Bootstrap[215]: Time 0.010436 seconds, bootstrap likelihood -128.945852, best rearrangement setting 14

Bootstrap[883]: Time 0.008965 seconds, bootstrap likelihood -117.249895, best rearrangement setting 10

Bootstrap[381]: Time 0.008386 seconds, bootstrap likelihood -100.430228, best rearrangement setting 8

Bootstrap[549]: Time 0.008726 seconds, bootstrap likelihood -150.070273, best rearrangement setting 6

Bootstrap[884]: Time 0.004461 seconds, bootstrap likelihood -92.343708, best rearrangement setting 11

Bootstrap[48]: Time 0.011696 seconds, bootstrap likelihood -124.506662, best rearrangement setting 6

Bootstrap[216]: Time 0.009444 seconds, bootstrap likelihood -143.966384, best rearrangement setting 5

Bootstrap[716]: Time 0.011604 seconds, bootstrap likelihood -97.260784, best rearrangement setting 14

Bootstrap[382]: Time 0.006864 seconds, bootstrap likelihood -132.353049, best rearrangement setting 10Bootstrap[550]: Time 0.006843 seconds, bootstrap likelihood -94.555467, best rearrangement setting 14



Bootstrap[49]: Time 0.006267 seconds, bootstrap likelihood -131.723535, best rearrangement setting 7

Bootstrap[717]: Time 0.008205 seconds, bootstrap likelihood -116.423663, best rearrangement setting 12

Bootstrap[383]: Time 0.005487 seconds, bootstrap likelihood -107.081334, best rearrangement setting 15





Stopped Rapid BS search after 300 replicates with MRE-based Bootstopping criterion

WRF Average of 100 random splits: 1.071895 %

Overall Time for 300 Rapid Bootstraps 0.822647 seconds

Average Time per Rapid Bootstrap 0.002742 seconds



Starting ML Search ...



Fast ML search on Process 3: Time 0.035337 seconds



Fast ML search on Process 5: Time 0.036420 seconds



Fast ML search on Process 2: Time 0.036779 seconds



Fast ML search on Process 4: Time 0.038866 seconds



Fast ML search on Process 1: Time 0.039168 seconds



Fast ML optimization finished



Fast ML search on Process 0: Time 0.044273 seconds



Slow ML Search 501 Likelihood: -130.015168

Slow ML Search 835 Likelihood: -130.015168

Slow ML Search 502 Likelihood: -130.015168

Slow ML Search 334 Likelihood: -130.015168Slow ML Search 668 Likelihood: -130.015168



Slow ML Search 836 Likelihood: -130.015168

Slow ML Search 167 Likelihood: -130.015168

Slow ML Search 335 Likelihood: -130.015168

Slow ML search on Process 3: Time 0.027288 seconds

Slow ML Search 669 Likelihood: -130.015168

Slow ML search on Process 5: Time 0.030911 seconds

Slow ML Search 168 Likelihood: -130.015168

Slow ML search on Process 2: Time 0.032636 seconds

Slow ML search on Process 4: Time 0.032592 seconds

Slow ML Search 0 Likelihood: -130.015168

Slow ML search on Process 1: Time 0.035200 seconds

Slow ML Search 1 Likelihood: -130.015168

Slow ML optimization finished



Thorough ML search on Process 3: Time 0.012915 seconds

Slow ML search on Process 0: Time 0.031019 seconds

processID = 3, bestLH = -130.015168

Thorough ML search on Process 5: Time 0.012751 seconds





processID = 5, bestLH = -130.015168

Thorough ML search on Process 2: Time 0.012971 seconds



processID = 2, bestLH = -130.015168

Thorough ML search on Process 4: Time 0.013421 seconds



processID = 4, bestLH = -130.015168

Thorough ML search on Process 1: Time 0.013065 seconds



processID = 1, bestLH = -130.015168

Thorough ML search on Process 0: Time 0.013375 seconds



processID = 0, bestLH = -130.015168



Final ML Optimization Likelihood: -130.015168



Model Information:



Model Parameters of Partition 0, Name: No Name Provided, Type of Data: AA

alpha: 0.846686

Tree-Length: 0.746939

rate A <-> R: 0.234172

rate A <-> N: 0.849957

rate A <-> D: 1.040763

rate A <-> C: 0.312229

rate A <-> Q: 0.771899

rate A <-> E: 1.717259

rate A <-> G: 2.081526

rate A <-> H: 0.199480

rate A <-> I: 0.563747

rate A <-> L: 0.355594

rate A <-> K: 0.225499

rate A <-> M: 0.624458

rate A <-> F: 0.156114

rate A <-> P: 2.168257

rate A <-> S: 3.547268

rate A <-> T: 3.217693

rate A <-> W: 0.000000

rate A <-> Y: 0.208153

rate A <-> V: 1.803990

rate R <-> N: 0.277537

rate R <-> D: 0.000000

rate R <-> C: 0.199480

rate R <-> Q: 2.133565

rate R <-> E: 0.008673

rate R <-> G: 0.078057

rate R <-> H: 2.081526

rate R <-> I: 0.555074

rate R <-> L: 0.130095

rate R <-> K: 4.024284

rate R <-> M: 0.780572

rate R <-> F: 0.121422

rate R <-> P: 0.893322

rate R <-> S: 1.335646

rate R <-> T: 0.225499

rate R <-> W: 1.743278

rate R <-> Y: 0.069384

rate R <-> V: 0.208153

rate N <-> D: 7.849089

rate N <-> C: 0.000000

rate N <-> Q: 0.893322

rate N <-> E: 1.283608

rate N <-> G: 1.205551

rate N <-> H: 4.640069

rate N <-> I: 0.667823

rate N <-> L: 0.294883

rate N <-> K: 2.758023

rate N <-> M: 0.008673

rate N <-> F: 0.121422

rate N <-> P: 0.364267

rate N <-> S: 4.293148

rate N <-> T: 1.986123

rate N <-> W: 0.199480

rate N <-> Y: 0.823938

rate N <-> V: 0.130095

rate D <-> C: 0.000000

rate D <-> Q: 1.162186

rate D <-> E: 10.000000

rate D <-> G: 1.084128

rate D <-> H: 0.745880

rate D <-> I: 0.208153

rate D <-> L: 0.000000

rate D <-> K: 0.615785

rate D <-> M: 0.000000

rate D <-> F: 0.000000

rate D <-> P: 0.112749

rate D <-> S: 0.823938

rate D <-> T: 0.572420

rate D <-> W: 0.000000

rate D <-> Y: 0.000000

rate D <-> V: 0.156114

rate C <-> Q: 0.000000

rate C <-> E: 0.000000

rate C <-> G: 0.095403

rate C <-> H: 0.242845

rate C <-> I: 0.381613

rate C <-> L: 0.000000

rate C <-> K: 0.000000

rate C <-> M: 0.000000

rate C <-> F: 0.000000

rate C <-> P: 0.164788

rate C <-> S: 1.396357

rate C <-> T: 0.138768

rate C <-> W: 0.000000

rate C <-> Y: 0.832611

rate C <-> V: 0.424978

rate Q <-> E: 6.209887

rate Q <-> G: 0.242845

rate Q <-> H: 5.255854

rate Q <-> I: 0.156114

rate Q <-> L: 0.633131

rate Q <-> K: 1.326973

rate Q <-> M: 0.988725

rate Q <-> F: 0.000000

rate Q <-> P: 1.326973

rate Q <-> S: 0.485690

rate Q <-> T: 0.459670

rate Q <-> W: 0.000000

rate Q <-> Y: 0.000000

rate Q <-> V: 0.303556

rate E <-> G: 0.702515

rate E <-> H: 0.372940

rate E <-> I: 0.529055

rate E <-> L: 0.095403

rate E <-> K: 0.719861

rate E <-> M: 0.260191

rate E <-> F: 0.000000

rate E <-> P: 0.442324

rate E <-> S: 0.685169

rate E <-> T: 0.294883

rate E <-> W: 0.000000

rate E <-> Y: 0.190807

rate E <-> V: 0.320902

rate G <-> H: 0.086730

rate G <-> I: 0.000000

rate G <-> L: 0.060711

rate G <-> K: 0.234172

rate G <-> M: 0.147441

rate G <-> F: 0.130095

rate G <-> P: 0.294883

rate G <-> S: 2.029488

rate G <-> T: 0.260191

rate G <-> W: 0.000000

rate G <-> Y: 0.000000

rate G <-> V: 0.468343

rate H <-> I: 0.060711

rate H <-> L: 0.381613

rate H <-> K: 0.225499

rate H <-> M: 0.000000

rate H <-> F: 0.416305

rate H <-> P: 0.815265

rate H <-> S: 0.303556

rate H <-> T: 0.190807

rate H <-> W: 0.234172

rate H <-> Y: 1.101474

rate H <-> V: 0.381613

rate I <-> L: 2.228968

rate I <-> K: 0.398959

rate I <-> M: 2.914137

rate I <-> F: 1.699913

rate I <-> P: 0.104076

rate I <-> S: 0.208153

rate I <-> T: 1.665221

rate I <-> W: 0.000000

rate I <-> Y: 0.320902

rate I <-> V: 7.710321

rate L <-> K: 0.156114

rate L <-> M: 4.570685

rate L <-> F: 1.361665

rate L <-> P: 0.277537

rate L <-> S: 0.147441

rate L <-> T: 0.286210

rate L <-> W: 0.398959

rate L <-> Y: 0.242845

rate L <-> V: 1.517780

rate K <-> M: 2.107546

rate K <-> F: 0.000000

rate K <-> P: 0.286210

rate K <-> S: 0.832611

rate K <-> T: 1.179532

rate K <-> W: 0.000000

rate K <-> Y: 0.112749

rate K <-> V: 0.086730

rate M <-> F: 0.797918

rate M <-> P: 0.147441

rate M <-> S: 0.537728

rate M <-> T: 0.901995

rate M <-> W: 0.000000

rate M <-> Y: 0.000000

rate M <-> V: 2.237641

rate F <-> P: 0.095403

rate F <-> S: 0.398959

rate F <-> T: 0.112749

rate F <-> W: 0.659150

rate F <-> Y: 6.053773

rate F <-> V: 0.104076

rate P <-> S: 2.124892

rate P <-> T: 0.676496

rate P <-> W: 0.000000

rate P <-> Y: 0.000000

rate P <-> V: 0.416305

rate S <-> T: 4.770165

rate S <-> W: 0.650477

rate S <-> Y: 0.294883

rate S <-> V: 0.260191

rate T <-> W: 0.000000

rate T <-> Y: 0.364267

rate T <-> V: 1.361665

rate W <-> Y: 0.529055

rate W <-> V: 0.000000

rate Y <-> V: 0.242845



freq pi(A): 0.087127

freq pi(R): 0.040904

freq pi(N): 0.040432

freq pi(D): 0.046872

freq pi(C): 0.033474

freq pi(Q): 0.038255

freq pi(E): 0.049530

freq pi(G): 0.088612

freq pi(H): 0.033618

freq pi(I): 0.036886

freq pi(L): 0.085357

freq pi(K): 0.080482

freq pi(M): 0.014753

freq pi(F): 0.039772

freq pi(P): 0.050680

freq pi(S): 0.069577

freq pi(T): 0.058542

freq pi(W): 0.010494

freq pi(Y): 0.029916

freq pi(V): 0.064717





ML search took 0.640950 secs or 0.000178 hours



Combined Bootstrap and ML search took 1.467399 secs or 0.000408 hours



Drawing Bootstrap Support Values on best-scoring ML tree ...







Found 1 tree in File /projects/ps-ngbt/backend/comet_workspace/NGBW-JOB-RAXMLHPC2BB-A839A22ECB44461AA01C19670E72718F/RAxML_bestTree.result







Found 1 tree in File /projects/ps-ngbt/backend/comet_workspace/NGBW-JOB-RAXMLHPC2BB-A839A22ECB44461AA01C19670E72718F/RAxML_bestTree.result



Program execution info written to /projects/ps-ngbt/backend/comet_workspace/NGBW-JOB-RAXMLHPC2BB-A839A22ECB44461AA01C19670E72718F/RAxML_info.result

All 300 bootstrapped trees written to: /projects/ps-ngbt/backend/comet_workspace/NGBW-JOB-RAXMLHPC2BB-A839A22ECB44461AA01C19670E72718F/RAxML_bootstrap.result



Best-scoring ML tree written to: /projects/ps-ngbt/backend/comet_workspace/NGBW-JOB-RAXMLHPC2BB-A839A22ECB44461AA01C19670E72718F/RAxML_bestTree.result



Best-scoring ML tree with support values written to: /projects/ps-ngbt/backend/comet_workspace/NGBW-JOB-RAXMLHPC2BB-A839A22ECB44461AA01C19670E72718F/RAxML_bipartitions.result



Best-scoring ML tree with support values as branch labels written to: /projects/ps-ngbt/backend/comet_workspace/NGBW-JOB-RAXMLHPC2BB-A839A22ECB44461AA01C19670E72718F/RAxML_bipartitionsBranchLabels.result



Overall execution time for full ML analysis: 1.491502 secs or 0.000414 hours or 0.000017 days